Skip to main content
Log in

Construction and electrochemical mechanism investigation of hierarchical core—shell like composite as high performance anode for potassium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Potassium-ion batteries (PIBs) are promising candidates for next-generation energy storage devices due to the earth abundance of potassium, low cost, and stable redox potentials. However, the lack of promising high-performance electrode materials for the intercalation/deintercalation of large potassium ions is a major challenge up to date. Herein, we report a novel uniform nickel selenide nanoparticles encapsulated in nitrogen-doped carbon (defined as “NiSe@NC”) as an anode for PIBs, which exhibits superior rate performance and cyclic stability. Benefiting from the unique hierarchical core—shell like nanostructure, the intrinsic properties of metal—selenium bonds, synergetic effect of different components, and a remarkable pseudocapacitance effect, the anode exhibits a very high reversible capacity of 438 mA·h·g−1 at 50 mA·g−1, an excellent rate capability, and remarkable cycling performance over 2,000 cycles. The electrochemical mechanism were investigated by the in-situ X-ray diffraction, ex-situ high-resolution transmission electron microscopy, selected area electron diffraction, and first principle calculations. In addition, NiSe@NC anode also shows high reversible capacity of 512 mA·h·g−1 at 100 mA·g−1 with 84% initial Coulombic efficiency, remarkable rate performance, and excellent cycling life for sodium ion batteries. We believe the proposed simple approach will pave a new way to synthesize suitable anode materials for secondary ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, L.; Zhang, B.; Wang B.; Zeng, S. Y.; Zhao, M. W.; Sun, X. P.; Zhai, Y. J.; Xu, L. Q. In-situ nano-crystallization and solvation modulation to promote highly stable anode involving alloy/de-alloy for potassium ion batteries. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202100654.

  2. Zhang, W. C.; Mao, J. F.; Li, S.; Chen, Z. X.; Guo, Z. P. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 2017, 139, 3316–3319.

    Article  CAS  Google Scholar 

  3. Huang, H. J.; Xu, R.; Feng, Y. Z.; Zeng, S. F.; Jiang, Y.; Wang, H. J.; Luo, W.; Yu, Y. Sodium/potassium-ion batteries: Boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 2020, 32, 1904320.

    Article  CAS  Google Scholar 

  4. Xue, L. G.; Li, Y. T.; Gao, H. C.; Zhou, W. D.; Lü, X. J.; Kaveevivitchai, W.; Manthiram, A.; Goodenough, J. B. Low-cost high-energy potassium cathode. J. Am. Chem. Soc. 2017, 139, 2164–2167.

    Article  CAS  Google Scholar 

  5. Zhang, C. L.; Xu, Y.; Zhou, M.; Liang, L. Y.; Dong, H. S.; Wu, M. H.; Yang, Y.; Lei, Y. Potassium prussian blue nanoparticles: A low-cost cathode material for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1604307.

    Article  CAS  Google Scholar 

  6. He, Y. Y.; Dong, C. F.; He, S. J.; Li, H.; Sun, X. P.; Cheng, Y.; Zhou, G. W.; Xu, L. Q. Bimetallic nickel cobalt sulfides with hierarchical coralliform architecture for ultrafast and stable Na-ion storage. Nano Res., in press, https://doi.org/10.1007/s12274-021-3328-9.

  7. Sun, X. P.; Wang, L.; Li, C. C.; Wang, D. B.; Sikandar, I.; Man, R. X.; Tian, F.; Qian, Y. T.; Xu, L. Q. Dandelion-like Bi2S3/rGO hierarchical microspheres as high-performance anodes for potassium-ion and half/full sodium-ion batteries. Nano Res. in press, https://doi.org/10.1007/s12274-021-3407-y.

  8. Abouimrane, A.; Weng, W.; Eltayeb, H.; Cui, Y. J.; Niklas, J.; Poluektov, O.; Amine, K. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energy Environ. Sci. 2012, 5, 9632–9638.

    Article  CAS  Google Scholar 

  9. Dong, C. F.; Guo, L. J.; Li, H. B.; Zhang, B.; Gao, X.; Tian, F.; Qian, Y. T.; Wang, D. B.; Xu, L. Q. Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries. Energy Storage Mater. 2020, 25, 679–686.

    Article  Google Scholar 

  10. Dong, C. F.; Wu, L. Q.; He, Y. Y.; Zhou, Y. L.; Sun, X. P.; Du, W.; Sun, X. Q.; Xu, L. Q.; Jiang, F. Y. Willow-leaf-like ZnSe@N-doped carbon nanoarchitecture as a stable and high-performance anode material for sodium-ion and potassium-ion batteries. Small 2020, 16, e2004580.

    Article  CAS  Google Scholar 

  11. Dong, C. F.; Guo, L. J.; He, Y. Y.; Chen, C. J.; Qian, Y. T.; Chen, Y. N.; Xu, L. Q. Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. Data Brief 2018, 20, 1999–2002.

    Article  Google Scholar 

  12. Wang, W.; Zhou, J. H.; Wang, Z. P.; Zhao, L. Y.; Li, P. H.; Yang, Y.; Yang, C.; Huang, H. X.; Guo, S. J. Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 2018, 8, 1701648.

    Article  CAS  Google Scholar 

  13. Jian, Z. L.; Hwang, S.; Li, Z. F.; Hernandez, A. S.; Wang, X. F.; Xing, Z. Y.; Su, D.; Ji, X. L. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700324.

    Article  CAS  Google Scholar 

  14. Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.

    Article  CAS  Google Scholar 

  15. Yang, J. L.; Ju, Z. C.; Jiang, Y.; Xing, Z.; Xi, B. J.; Feng, J. K.; Xiong, S. L. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.

    Article  CAS  Google Scholar 

  16. Chen, M. Z; Wang, E. H.; Liu, Q. N.; Guo, X. D.; Chen, W. H.; Chou, S. L.; Dou, S. X. Recent progress on iron-and manganese-based anodes for sodium-ion and potassium-ion batteries. Energy Storage Mater. 2019, 19, 163–178.

    Article  Google Scholar 

  17. Tong, Z. Q.; Yang, R.; Wu, S. L.; Shen, D.; Jiao, T. P.; Zhang, K. L.; Zhang, W. J.; Lee, C. S. Surface-engineered black niobium oxide@graphene nanosheets for high-performance sodium-/potassium-ion full batteries. Small 2019, 15, 1901272.

    Article  CAS  Google Scholar 

  18. Tan, H. T.; Feng, Y. Z.; Rui, X. H.; Yu, Y.; Huang, S. M. Metal chalcogenides: Paving the way for high-performance sodium/potassium-ion batteries. Small Methods 2020, 4, 1900563.

    Article  CAS  Google Scholar 

  19. Lin, H. Z.; Li, M. L.; Yang, X.; Yu, D. X.; Zeng, Y.; Wang, C. Z.; Chen, G.; Du, F. Nanosheets-assembled cuse crystal pillar as a stable and high-power anode for sodium-ion and potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900323.

    Article  CAS  Google Scholar 

  20. Zhang, Z. F.; Wu, C. X.; Chen, Z. H.; Li, H. Y.; Cao, H. J.; Luo, X. J.; Fang, Z. B.; Zhu, Y. Y. Spatially confined synthesis of a flexible and hierarchically porous three-dimensional graphene/FeP hollow nanosphere composite anode for highly efficient and ultrastable potassium ion storage. J. Mater. Chem. A 2020, 8, 3369–3378.

    Article  CAS  Google Scholar 

  21. Lian, P. C.; Dong, Y. F.; Wu, Z. S.; Zheng, S. H.; Wang, X. H.; Wang, S.; Sun, C. L.; Qin, J. Q.; Shi, X. Y.; Bao, X. H. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 2017, 40, 1–8.

    Article  CAS  Google Scholar 

  22. An, Y. L.; Fei, H. F.; Zhang, Z.; Ci, L. J.; Xiong, S. L.; Feng, J. K. A titanium-based metal-organic framework as an ultralong cycle-life anode for PIBs. Chem. Commun. 2017, 53, 8360–8363.

    Article  CAS  Google Scholar 

  23. He, Y. Y.; Wang, L.; Dong, C. F.; Li, C. C.; Ding, X. Y.; Qian, Y. T.; Xu, L. Q. In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Mater. 2019, 23, 35–45.

    Article  Google Scholar 

  24. Chen, X. X.; Zeng, S. Y.; Muheiyati, H.; Zhai, Y. J.; Li, C. C.; Ding, X. Y.; Wang, L.; Wang, D. B.; Xu, L. Q.; He, Y. Y. Double-shelled Ni-Fe-P/N-doped carbon nanobox derived from a Prussian blue analogue as an electrode material for K-ion batteries and Li-S batteries. ACS Energy Lett. 2019, 4, 1496–1504.

    Article  CAS  Google Scholar 

  25. Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351–9355.

    Article  CAS  Google Scholar 

  26. Niu, F. E.; Yang, J.; Wang, N. N.; Zhang, D. P.; Fan, W. L.; Yang, J.; Qian, Y. T. MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700522.

    Article  CAS  Google Scholar 

  27. Yuan, J. J.; Liu, W.; Zhang, X. K.; Zhang, Y. H.; Yang, W. T.; Lai, W. D.; Li, X. K.; Zhang, J. J.; Li, X. F. MOF derived ZnSe-FeSe2/RGO Nanocomposites with enhanced sodium/potassium storage. J. Power Sources 2020, 455, 227937.

    Article  CAS  Google Scholar 

  28. Chu, J. H.; Yu, Q. Y.; Han, K.; Xing, L. D.; Bao, Y. P.; Wang, W. A. A novel graphene-wrapped corals-like NiSe2 for ultrahigh-capacity potassium ion storage. Carbon 2020, 161, 834–841.

    Article  CAS  Google Scholar 

  29. Etogo, C. A.; Huang, H. W.; Hong, H.; Liu, G. X.; Zhang, L. Metal-organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Storage Mater. 2020, 24, 167–176.

    Article  Google Scholar 

  30. Sobhani, A.; Salavati-Niasari, M.; Davar, F. Shape control of nickel selenides synthesized by a simple hydrothermal reduction process. Polyhedron 2012, 31, 210–216.

    Article  CAS  Google Scholar 

  31. Sobhani, A.; Davar, F.; Salavati-Niasari, M. Synthesis and characterization of hexagonal nano-sized nickel selenide by simple hydrothermal method assisted by CTAB. Appl. Surf. Sci. 2011, 257, 7982–7987.

    Article  CAS  Google Scholar 

  32. Moloto, N.; Moloto, M.; Coville, N.; Ray, S. S. Optical and structural characterization of nickel selenide nanoparticles synthesized by simple methods. J. Crystal Growth 2009, 311, 3924–3932.

    Article  CAS  Google Scholar 

  33. Huang, Y.; Chong, X. D.; Liu, C. B.; Liang, Y.; Zhang, B. Boosting hydrogen production by anodic oxidation of primary amines over a NiSe nanorod electrode. Angew. Chem., Int. Ed. 2018, 57, 13163–13166.

    Article  CAS  Google Scholar 

  34. Ding, J.; Wang, H. L.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z. W.; Zahiri, B.; Tan, X. H.; Lotfabad, E. M.; Olsen, B. C. et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 2013, 7, 11004–11015.

    Article  CAS  Google Scholar 

  35. Ding, J.; Hu, W. B.; Paek, E.; Mitlin, D. Review of hybrid ion capacitors: From aqueous to lithium to sodium. Chem. Rev. 2018, 118, 6457–6498.

    Article  CAS  Google Scholar 

  36. Yu, Q. Y.; Jiang, B.; Hu, J.; Lao, C. Y.; Gao, Y. Z.; Li, P. H.; Liu, Z. W.; Suo, G. Q; He, D. L.; Wang, W. A. et al. Metallic octahedral CoSe2 threaded by N-doped carbon nanotubes: A flexible framework for high-performance potassium-ion batteries. Adv. Sci. 2018, 5, 1800782.

    Article  CAS  Google Scholar 

  37. Suo, G. Q.; Zhang, J. Q.; Li, D.; Yu, Q. Y.; Wang, W. A.; He, M.; Feng, L.; Hou, X. J.; Yang, Y. L.; Ye, X. H. et al. N-doped carbon/ultrathin 2D metallic cobalt selenide core/sheath flexible framework bridged by chemical bonds for high-performance potassium storage. Chem. Eng. J. 2020, 388, 124396.

    Article  CAS  Google Scholar 

  38. Liu, Z. W.; Han, K.; Li, P.; Wang, W.; He, D. L.; Tan, Q. W.; Wang, L. Y.; Li, Y.; Qin, M. L.; Qu, X. H. Tuning metallic Co0.85Se quantum dots/carbon hollow polyhedrons with tertiary hierarchical structure for high-performance potassium ion batteries. Nano-Micro Lett. 2019, 11, 96.

    Article  CAS  Google Scholar 

  39. Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang, Y.; Wang, W.; Li, J. B. et al. Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater. 2018, 30, 1800036.

    Article  CAS  Google Scholar 

  40. Wang, W.; Jiang, B.; Qian, C.; Lv, F.; Feng, J. R.; Zhou, J. H.; Wang, K.; Yang, C.; Yang, Y.; Guo, S. J. Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 2018, 30, 1801812.

    Article  CAS  Google Scholar 

  41. Chen, J.; Song, W. X.; Hou, H. S.; Zhang, Y.; Jing, M. J.; Jia, X. N.; Ji, X. B. Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 6793–6801.

    Article  CAS  Google Scholar 

  42. Su, C. Q.; Ru, Q.; Cheng, S. K.; Gao, Y. Q.; Chen, F. M.; Zhao, L. Z.; Ling, F. C. C. 3D pollen-scaffolded NiSe composite encapsulated by MOF-derived carbon shell as a high-low temperature anode for Na-ion storage. Compos. Part B Eng. 2019, 179, 107538.

    Article  CAS  Google Scholar 

  43. Zhang, Z. A.; Shi, X. D.; Yang, X. Synthesis of core—shell NiSe/C nanospheres as anodes for lithium and sodium storage. Electrochim. Acta 2016, 208, 238–243.

    Article  CAS  Google Scholar 

  44. Yang, J.; Yang, N.; Xu, Q.; Pearlie, L. S.; Zhang, Y. Z.; Hong, Y.; Wang, Q.; Wang, W. J.; Yan, Q. Y.; Dong, X. C. Bioinspired controlled synthesis of NiSe/Ni2P nanoparticles decorated 3D porous carbon for Li/Na ion batteries. ACS Sustainable Chem. Eng. 2019, 7, 13217–13225.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Academy of Sciences large apparatus United Fund (No. U1832187), the National Nature Science Foundation of China (No. 22071135), and the Nature Science Foundation of Shandong Province (No. ZR2019MEM030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingwen Zhao or Liqiang Xu.

Electronic Supplementary Material

12274_2021_3657_MOESM1_ESM.pdf

Construction and electrochemical mechanism investigation of hierarchical core—shell like composite as high performance anode for potassium ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, N., Zeng, S., Feng, Z. et al. Construction and electrochemical mechanism investigation of hierarchical core—shell like composite as high performance anode for potassium ion batteries. Nano Res. 14, 3552–3561 (2021). https://doi.org/10.1007/s12274-021-3657-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3657-8

Keywords

Navigation