Skip to main content
Log in

Fine-tuning of Pd-Rh core-shell catalysts by interstitial hydrogen doping for enhanced methanol oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metal catalysts play an important role in the catalytic electrochemical processes and optimization of their performance is usually achieved through alloying with other metal atoms. Doping with interstitial hydrogen atoms is a special but effective way to regulate the electronic structure of host catalysts. Herein we demonstrate the intermixing of Pd and Rh atoms during the hydrogen-doping process of Pd@Rh core-shell nanocubes, forming an alloyed surface in Pd@Rh-H. The catalysts show enhanced performance in electrocatalytic methanol oxidation, as compared to commercial Pt/C and are even better than PdH@Rh core-shell nanocubes. The small structural differences between the two hydride catalysts are revealed by X-ray electron spectroscopy and pair distribution function analysis of electron diffraction. The theoretical calculation results show that Rh in Pd@Rh-H contains more negative charges than Rh in PdH@Rh, indicating more effective charge transfer in Pd@Rh-H. The d-band center (εd) of the Rh site in Pd@Rh-H shifts up, and the synergy between Rh and Pd optimizes the binding energy of CO and OH, inducing preferential catalytic activity. Our work provides guidance for the synthesis of high-performance catalysts by doping with interstitial atoms, which may provide a new strategy to fine-tune the electronic structure of other bimetallic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  2. Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34–59.

    Article  CAS  Google Scholar 

  3. Guan, E. J.; Ciston, J.; Bare, S. R.; Runnebaum, R. C.; Katz, A.; Kulkarni, A.; Kronawitter, C. X.; Gates, B. C. Supported metal pair-site catalysts. ACS Catal. 2020, 10, 9065–9085.

    Article  CAS  Google Scholar 

  4. Xu, S. L.; Shen, S. C.; Wei, Z. Y.; Zhao, S.; Zuo, L. J.; Chen, M. X.; Wang, L.; Ding, Y. W.; Chen, P.; Chu, S. Q. et al. A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Res. 2020, 13, 2735–2740.

    Article  CAS  Google Scholar 

  5. Hui, F.; Li, C.; Chen, Y. H.; Wang, C. H.; Huang, J. P.; Li, A.; Li, W.; Zou, J.; Han, X. D. Understanding the structural evolution of Au/WO2.7 compounds in hydrogen atmosphere by atomic scale in situ environmental TEM. Nano Res 2020, 13, 3019–3024.

    Article  CAS  Google Scholar 

  6. Li, L. C.; Dostagir, N. H.; Shrotri, A.; Fukuoka, A.; Kobayashi, H. Partial oxidation of methane to syngas via formate intermediate found for a ruthenium-rhenium bimetallic catalyst. ACS Catal. 2021, 11, 3782–3789.

    Article  CAS  Google Scholar 

  7. Liu, C.; Chen, Z. L.; Rao, D. W.; Zhang, J. F.; Liu, Y. W.; Chen, Y. N.; Deng, Y. D.; Hu, W. B. Behavior of gold-enhanced electrocatalytic performance of NiPtAu hollow nanocrystals for alkaline methanol oxidation. Sci. China Mater. 2021, 64, 611–620.

    Article  CAS  Google Scholar 

  8. Xu, C. J.; Zhang, Y.; Chen, J.; Li, S.; Zhang, Y. W.; Qin, G. W. Carbon-CeO2 interface confinement enhances the chemical stability of Pt nanocatalyst for catalytic oxidation reactions. Sci. China Mater. 2021, 64, 128–136.

    Article  CAS  Google Scholar 

  9. Gong, S. Y.; Zhang, Y. X.; Niu, Z. Q. Recent advances in earth-abundant core/noble-metal shell nanoparticles for electrocatalysis. ACS Catal. 2020, 10, 10886–10904.

    Article  CAS  Google Scholar 

  10. Chen, J. Y.; Lim, B.; Lee, E. P.; Xia, Y. N. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 2009, 4, 81–95.

    Article  Google Scholar 

  11. Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

    Article  CAS  Google Scholar 

  12. Yu, W. T.; Porosoff, M. D.; Chen, J. G. Review of Pt-based bimetallic catalysis: From model surfaces to supported catalysts. Chem. Rev. 2012, 112, 5780–5817.

    Article  CAS  Google Scholar 

  13. Zhang, H.; Jin, M. S.; Xia, Y. N. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 2012, 41, 8035–8049.

    Article  CAS  Google Scholar 

  14. Gilroy, K. D.; Yang, X.; Xie, S. F.; Zhao, M.; Qin, D.; Xia, Y. N. Shape-controlled synthesis of colloidal metal nanocrystals by replicating the surface atomic structure on the seed. Adv. Mater. 2018, 30, 1706312.

    Article  Google Scholar 

  15. Tao, F.; Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung, J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 2008, 322, 932–934.

    Article  CAS  Google Scholar 

  16. Bao, H. B.; Xia, S. Y.; Wu, F. X.; Li, F. H.; Zhang, L.; Yuan, Y. L.; Xu, G. B.; Niu, W. X. Surface engineering of Rh-modified Pd nanocrystals by colloidal underpotential deposition for electrocatalytic methanol oxidation. Nanoscale 2021, 13, 5284–5291.

    Article  CAS  Google Scholar 

  17. Bu, L. Z; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

    Article  CAS  Google Scholar 

  18. Wang, X.; Choi, S. I.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M. F.; Liu, J. Y.; Xie, Z. X.; Herron, J. A. et al. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 2015, 6, 7594.

    Article  Google Scholar 

  19. Zhou, M.; Wang, H. L.; Elnabawy, A. O.; Hood, Z. D.; Chi, M. F.; Xiao, P.; Zhang, Y. H.; Mavrikakis, M.; Xia, Y. N. Facile one-pot synthesis of Pd@Pt1L octahedra with enhanced activity and durability toward oxygen reduction. Chem. Mater. 2019, 31, 1370–1380.

    Article  CAS  Google Scholar 

  20. Deng, Y. J.; Tripkovic, V.; Rossmeisl, J.; Arenz, M. Oxygen reduction reaction on Pt overlayers deposited onto a gold film: Ligand, strain, and ensemble effect. ACS Catal. 2016, 6, 671–676.

    Article  CAS  Google Scholar 

  21. Van Cleve, T.; Moniri, S.; Belok, G.; More, K. L.; Linic, S. Nanoscale engineering of efficient oxygen reduction electrocatalysts by tailoring the local chemical environment of Pt surface sites. ACS Catal. 2017, 7, 17–24.

    Article  Google Scholar 

  22. Xin, H. L.; Holewinski, A.; Linic, S. Predictive structure-reactivity models for rapid screening of Pt-based multimetallic electrocatalysts for the oxygen reduction reaction. ACS Catal. 2012, 2, 12–16.

    Article  CAS  Google Scholar 

  23. Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 2004, 93, 156801.

    Article  CAS  Google Scholar 

  24. Zhu, J. W.; Lyu, Z. H.; Chen, Z. T.; Xie, M. H.; Chi, M. F.; Jin, W. Q.; Xia, Y. N. Facile synthesis and characterization of Pd@IrnL (n = 1–4) core-shell nanocubes for highly efficient oxygen evolution in acidic media. Chem. Mater. 2019, 31, 5867–5875.

    Article  CAS  Google Scholar 

  25. Chan, C. W. A.; Mahadi, A. H.; Li, M. M. J.; Corbos, E. C.; Tang, C.; Jones, G.; Kuo, W. C. H.; Cookson, J.; Brown, C. M.; Bishop, P. T. et al. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation. Nat. Commun. 2014, 5, 5787.

    Article  CAS  Google Scholar 

  26. Jiang, K.; Xu, K.; Zou, S. Z.; Cai, W. B. B-Doped Pd catalyst: Boosting room-temperature hydrogen production from formic acid-formate solutions. J. Am. Chem. Soc. 2014, 136, 4861–4864.

    Article  CAS  Google Scholar 

  27. Li, J.; Chen, J. X.; Wang, Q.; Cai, W. B.; Chen, S. L. Controllable increase of boron content in B-Pd interstitial nanoalloy to boost the oxygen reduction activity of palladium. Chem. Mater. 2017, 29, 10060–10067.

    Article  CAS  Google Scholar 

  28. Guo, R. Y.; Chen, Q.; Li, X.; Liu, Y. M.; Wang, C. Q.; Bi, W.; Zhao, C. Y.; Guo, Y. J.; Jin, M. S. PdCx nanocrystals with tunable compositions for alkyne semihydrogenation. J. Mater. Chem. A 2019, 7, 4714–4720.

    Article  CAS  Google Scholar 

  29. Fan, J. C.; Cui, X. Q.; Yu, S. S.; Gu, L.; Zhang, Q. H.; Meng, F. Q; Peng, Z. Q.; Ma, L. P.; Ma, J. Y.; Qi, K. et al. Interstitial hydrogen atom modulation to boost hydrogen evolution in Pd-based alloy nanoparticles. ACS Nano 2019, 13, 12987–12995.

    Article  CAS  Google Scholar 

  30. Fan, J. C.; Wu, J. D.; Cui, X. Q.; Gu, L.; Zhang, Q. H.; Meng, F. Q.; Lei, B. H.; Singh, D. J.; Zheng, W. T. Hydrogen stabilized RhPdH 2D bimetallene nanosheets for efficient alkaline hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 3645–3651.

    Article  CAS  Google Scholar 

  31. Kim, J.; Kim, H.; Lee, W. J.; Ruqia, B.; Baik, H.; Oh, H. S.; Paek, S. M.; Lim, H. K.; Choi, C. H.; Choi, S. I. Theoretical and experimental understanding of hydrogen evolution reaction kinetics in alkaline electrolytes with Pt-based core-shell nanocrystals. J. Am. Chem. Soc. 2019, 141, 18256–18263.

    Article  CAS  Google Scholar 

  32. Favier, F.; Walter, E. C.; Zach, M. P.; Benter, T.; Penner, R. M. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 2001, 293, 2227–2231.

    Article  CAS  Google Scholar 

  33. Yang, F.; Kung, S. C.; Cheng, M.; Hemminger, J. C.; Penner, R. M. Smaller is faster and more sensitive: The effect of wire size on the detection of hydrogen by single palladium nanowires. ACS Nano 2010, 4, 5233–5244.

    Article  CAS  Google Scholar 

  34. Adhikari, S.; Fernando, S. Hydrogen membrane separation techniques. Ind. Eng. Chem. Res. 2006, 45, 875–881.

    Article  CAS  Google Scholar 

  35. Horinouchi, S.; Yamanoi, Y.; Yonezawa, T.; Mouri, T.; Nishihara, H. Hydrogen storage properties of isocyanide-stabilized palladium nanoparticles. Langmuir 2006, 22, 1880–1884.

    Article  CAS  Google Scholar 

  36. Li, G. Q.; Kobayashi, H.; Taylor, J. M.; Ikeda, R.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Toh, S.; Matsumura, S. et al. Hydrogen storage in Pd nanocrystals covered with a metal-organic framework. Nat. Mater. 2014, 13, 802–806.

    Article  CAS  Google Scholar 

  37. Baldi, A.; Narayan, T. C.; Koh, A. L.; Dionne, J. A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater. 2014, 13, 1143–1148.

    Article  CAS  Google Scholar 

  38. Bardhan, R.; Hedges, L. O.; Pint, C. L.; Javey, A.; Whitelam, S.; Urban, J. J. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals. Nat. Mater. 2013, 12, 905–912.

    Article  CAS  Google Scholar 

  39. Rose, A.; Maniguet, S.; Mathew, R. J.; Slater, C.; Yao, J.; Russell, A. E. Hydride phase formation in carbon supported palladium nanoparticle electrodes investigated using in situ EXAFS and XRD. Phys. Chem. Chem. Phys. 2003, 5, 3220–3225.

    Article  CAS  Google Scholar 

  40. Murphy, D. W.; Zahurak, S. M.; Vyas, B.; Thomas, M.; Badding, M. E.; Fang, W. C. A new route to metal hydrides. Chem. Mater. 1993, 5, 767–769.

    Article  CAS  Google Scholar 

  41. Zhao, Z. P.; Huang, X. Q.; Li, M. F.; Wang, G. M.; Lee, C.; Zhu, E. B.; Duan, X. F.; Huang, Y. Synthesis of stable shape-controlled catalytically active β-palladium hydride. J. Am. Chem. Soc. 2015, 137, 15672–15675.

    Article  CAS  Google Scholar 

  42. Zhan, C. Y.; Li, H. Q.; Li, X. M.; Jiang, Y. Q.; Xie, Z. X. Synthesis of PdH0.43 nanocrystals with different surface structures and their catalytic activities towards formic acid electro-oxidation. Sci. China Mater. 2020, 63, 375–382.

    Article  CAS  Google Scholar 

  43. Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes < 10 nm for application in CO oxidation. Nano Res. 2011, 4, 83–91.

    Article  CAS  Google Scholar 

  44. Choi, S. I.; Young, A.; Lee, S. R.; Ma, C.; Luo, M.; Chi, M. F.; Tsung, C. K.; Xia, Y. N. Pd@Rh core-shell nanocrystals with well-defined facets and their enhanced catalytic performance towards CO oxidation. Nanoscale Horiz. 2019, 4, 1232–1238.

    Article  CAS  Google Scholar 

  45. Kibis, L. S.; Stadnichenko, A. I.; Koscheev, S. V.; Zaikovskii, V. I.; Boronin, A. I. XPS study of nanostructured rhodium oxide film comprising Rh4+ species. J. Phy. Chem. C 2016, 120, 19142–19150.

    Article  CAS  Google Scholar 

  46. Kobayashi, H.; Yamauchi, M.; Kitagawa, H.; Kubota, Y.; Kato, K.; Takata, M. Hydrogen absorption in the core/shell interface of Pd/Pt nanoparticles. J. Am. Chem. Soc. 2008, 130, 1818–1819.

    Article  CAS  Google Scholar 

  47. Kobayashi, H.; Yamauchi, M.; Kitagawa, H.; Kubota, Y.; Kato, K.; Takata, M. Atomic-level Pd-Pt alloying and largely enhanced hydrogen-storage capacity in bimetallic nanoparticles reconstructed from core/shell structure by a process of hydrogen absorption/desorption. J. Am. Chem. Soc. 2010, 132, 5576–5577.

    Article  CAS  Google Scholar 

  48. Dekura, S.; Kobayashi, H.; Kusada, K.; Kitagawa, H. Hydrogen in palladium and storage properties of related nanomaterials: Size, shape, alloying, and metal-organic framework coating effects. ChemPhysChem 2019, 20, 1158–1176.

    Article  CAS  Google Scholar 

  49. Ferrin, P.; Nilekar, A. U.; Greeley, J.; Mavrikakis, M.; Rossmeisl, J. Reactivity descriptors for direct methanol fuel cell anode catalysts. Surf. Sci. 2008, 602, 3424–3431.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Tianjin, China (No. 18JCYBJC20600) and Institute of Energy, Hefei Comprehensive National Science Center (No. 19KZS207), the National Key R&D Program of China (No. 2020YFA0406101), the National Natural Science Foundation of China (No. 21701168), Dalian high level talent innovation project (No. 2019RQ063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangwei Zhang or Shi Hu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Hu, Z., Lv, J. et al. Fine-tuning of Pd-Rh core-shell catalysts by interstitial hydrogen doping for enhanced methanol oxidation. Nano Res. 15, 1288–1294 (2022). https://doi.org/10.1007/s12274-021-3652-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3652-0

Keywords

Navigation