Skip to main content
Log in

Band alignment and interlayer hybridization in monolayer organic/WSe2 heterojunction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Semiconducting heterojunctions (HJs), comprised of atomically thin transition metal dichalcogenides (TMDs), have shown great potentials in electronic and optoelectronic applications. Organic/TMD hybrid bilayers hold enhanced pumping efficiency of interfacial excitons, tunable electronic structures and optical properties, and other superior advantages to these inorganic HJs. Here, we report a direct probe of the interfacial electronic structures of a crystalline monolayer (ML) perylene-3,4,9,10-tetracarboxylic-dianhydride (PTCDA)/ML-WSe2 HJ using scanning tunneling microscopy, photoluminescence, and first-principle calculations. Strong PTCDA/WSe2 interfacial interactions lead to appreciable hybridization of the WSe2 conduction band with PTCDA unoccupied states, accompanying with a significant amount of PTCDA-to-WSe2 charge transfer (by 0.06 e/PTCDA). A type-II band alignment was directly determined with a valence band offset of ∼ 1.69 eV, and an apparent conduction band offset of ∼ 1.57 eV. Moreover, we found that the local stacking geometry at the HJ interface differentiates the hybridized interfacial states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Article  CAS  Google Scholar 

  2. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

  3. Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681.

    Article  CAS  Google Scholar 

  4. Furchi, M. M.; Pospischil, A.; Libisch, F.; Burgdörfer, J.; Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 2014, 14, 4785–4791.

    Article  CAS  Google Scholar 

  5. Gong, C.; Zhang, H. J.; Wang, W. H.; Colombo, L.; Wallace, R. M.; Cho, K. Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Appl. Phys. Lett. 2013, 103, 053513.

    Article  Google Scholar 

  6. Chiu, M. H.; Zhang, C. D.; Shiu, H. W.; Chuu, C. P.; Chen, C. H.; Chang, C. S.; Chen, C. H.; Chou, M. Y.; Shih, C. K.; Li, L. J. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 2015, 6, 7666.

    Article  CAS  Google Scholar 

  7. Zhang, C. D.; Li, M. Y.; Tersoff, J.; Han, Y. M.; Su, Y. S.; Li, L. J.; Muller, D. A.; Shih, C. K. Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol. 2018, 13, 152–158.

    Article  CAS  Google Scholar 

  8. Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

    Article  CAS  Google Scholar 

  9. Park, J. H.; Sanne, A.; Guo, Y. Z.; Amani, M.; Zhang, K. H.; Movva, H. C. P.; Robinson, J. A.; Javey, A.; Robertson, J.; Banerjee, S. K. et al. Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface. Sci. Adv. 2017, 3, e1701661.

    Article  Google Scholar 

  10. Sanchez, O. L.; Ovchinnikov, D.; Misra, S.; Allain, A.; Kis, A. Valley polarization by spin injection in a light-emitting van der Waals heterojunction. Nano Lett. 2016, 16, 5792–5797.

    Article  CAS  Google Scholar 

  11. Kim, J.; Jin, C. H.; Chen, B.; Cai, H.; Zhao, T.; Lee, P.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Tongay, S. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 2017, 3, e1700518.

    Article  Google Scholar 

  12. Surrente, A.; Dumcenco, D.; Yang, Z.; Kuc, A.; Jing, Y.; Heine, T.; Kung, Y. C.; Maude, D. K.; Kis, A.; Plochocka, P. Defect healing and charge transfer-mediated valley polarization in MoS2/MoSe2/MoS2 trilayer van der Waals heterostructures. Nano Lett. 2017, 17, 4130–4136.

    Article  CAS  Google Scholar 

  13. Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.

    Article  CAS  Google Scholar 

  14. Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.

    Article  CAS  Google Scholar 

  15. Reese, C.; Bao Z. N. Organic single-crystal field-effect transistors. Mater. Today 2007, 10, 20–27.

    Article  CAS  Google Scholar 

  16. Capelli, R.; Toffanin, S.; Generali, G.; Usta, H.; Facchetti, A.; Muccini, M. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nat. Mater. 2010, 9, 496–503.

    Article  CAS  Google Scholar 

  17. McCarthy, M. A.; Liu, B.; Donoghue, E. P.; Kravchenko, I.; Kim, D. Y.; So, F.; Rinzler, A. G. Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 2011, 332, 570–573.

    Article  CAS  Google Scholar 

  18. Kobitski, A. Y.; Scholz, R.; Zahn, D. R. T.; Wagner, H. P. Time-resolved photoluminescence study of excitons in α-PTCDA as a function of temperature. Phys. Rev. B 2003, 68, 155201.

    Article  Google Scholar 

  19. Zhao, H. J.; Zhao, Y. B.; Song, Y. X.; Zhou, M.; Lv, W.; Tao, L.; Feng, Y. Z.; Song, B. Y.; Ma, Y.; Zhang, J. Q. et al. Strong optical response and light emission from a monolayer molecular crystal. Nat. Commun. 2019, 10, 5589.

    Article  CAS  Google Scholar 

  20. Cheng, C. H.; Li, Z. D.; Hambarde, A.; Deotare, P. B. Efficient energy transfer across organic-2D inorganic heterointerfaces. ACS Appl. Mater. Inter. 2018, 10, 39336–39342.

    Article  CAS  Google Scholar 

  21. Gu, J.; Liu, X.; Lin, E. C.; Lee, Y. H.; Forrest, S. R.; Menon, V. M. Dipole-aligned energy transfer between excitons in two-dimensional transition metal dichalcogenide and organic semiconductor. ACS Photonics 2018, 5, 100–104.

    Article  CAS  Google Scholar 

  22. Vélez, S.; Ciudad, D.; Island, J.; Buscema, M.; Txoperena, O.; Parui, S.; Steele, G. A.; Casanova, F.; van der Zant, H. S. J; Castellanos-Gomez, A. et al. Gate-tunable diode and photovoltaic effect in an organic-2D layered material p-n junction. Nanoscale 2015, 7, 15442–15449.

    Article  Google Scholar 

  23. Jariwala, D.; Howell, S. L.; Chen, K. S.; Kang, J. M.; Sangwan, V. K.; Filippone, S. A.; Turrisi, R.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Hybrid, gate-tunable, van der Waals p-n heterojunctions from pentacene and MoS2. Nano Lett. 2016, 16, 497–503.

    Article  CAS  Google Scholar 

  24. Li, W. S.; Zhou, J.; Cai, S. H.; Yu, Z. H.; Zhang, J. L.; Fang, N.; Li, T. T.; Wu, Y.; Chen, T. S.; Xie, X. Y. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2019, 2, 563–571.

    Article  CAS  Google Scholar 

  25. Arramel; Yin, X. M.; Wang, Q. X.; Zheng, Y. J.; Song, Z. B.; bin Hassan, M. H.; Qi, D. Y.; Wu, J. S.; Rusydi, A.; Wee, A. T. S. Molecular alignment and electronic structure of N,N’-Dibutyl-3,4,9,10-perylene-tetracarboxylic-diimide molecules on MoS2 Surfaces. ACS Appl. Mater. Inter. 2017, 9, 5566–5573.

    Article  CAS  Google Scholar 

  26. Song, Z. B.; Schultz, T.; Ding, Z. J.; Lei, B.; Han, C.; Amsalem, P.; Lin, T. T.; Chi, D. Z.; Wong, S. L.; Zheng, Y. J. et al. Electronic properties of a 1D intrinsic/p-doped heterojunction in a 2D transition metal dichalcogenide semiconductor. ACS Nano 2017, 11, 9128–9135.

    Article  CAS  Google Scholar 

  27. Huang, Y. L.; Zheng, Y. J.; Song, Z. B.; Chi, D. Z.; Wee, A. T. S.; Quek, S. Y. The organic-2D transition metal dichalcogenide heterointerface. Chem. Soc. Rev. 2018, 47, 3241–3264.

    Article  CAS  Google Scholar 

  28. Zhang, L. L.; Sharma, A.; Zhu, Y.; Zhang, Y. H.; Wang, B. W.; Dong, M. H.; Nguyen, H. T.; Wang, Z.; Wen, B.; Cao, Y. J. et al. Efficient and layer-dependent exciton pumping across atomically thin organic-inorganic type-I heterostructures. Adv. Mater. 2018, 30, e1803986.

    Article  Google Scholar 

  29. Chen, X. Q.; Liu, X. L.; Wu, B.; Nan, H. Y.; Guo, H.; Ni, Z. H.; Wang, F. Q.; Wang, X. M.; Shi, Y.; Wang, X. R. Improving the performance of graphene phototransistors using a heterostructure as the light-absorbing layer. Nano Lett. 2017, 17, 6391–6396.

    Article  CAS  Google Scholar 

  30. Hirade, M.; Nakanotani, H.; Yahiro, M.; Adachi, C. Formation of organic crystalline nanopillar arrays and their application to organic photovoltaic cells. ACS Appl. Mater. Inter. 2011, 3, 80–83.

    Article  CAS  Google Scholar 

  31. Obaidulla, S. M.; Habib, M. R.; Khan, Y.; Kong, Y. H.; Liang, T.; Xu, M. S. MoS2 and perylene derivative based type-II heterostructure: bandgap engineering and giant photoluminescence enhancement. Adv. Mater. Inter. 2020, 7, 1901197.

    Article  CAS  Google Scholar 

  32. Wang, S. Y.; Chen, C. S.; Yu, Z. H.; He, Y. L.; Chen, X. Y.; Wan, Q.; Shi, Y.; Zhang, D. W.; Zhou, H.; Wang, X. R. et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 2019, 31, 1806227.

    Article  Google Scholar 

  33. Habib, M. R.; Li, H. F.; Kong, Y. H.; Liang, T.; Obaidulla, S. M.; Xie, S.; Wang, S. P.; Ma, X. Y.; Su, H. X.; Xu, M. S. Tunable photoluminescence in a van der Waals heterojunction built from a MoS2 monolayer and a PTCDA organic semiconductor. Nanoscale 2018, 10, 16107–16115.

    Article  CAS  Google Scholar 

  34. Zhu, T.; Yuan, L.; Zhao, Y.; Zhou, M. W.; Wan, Y.; Mei, J. G.; Huang, L. B. Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures. Sci. Adv. 2018, 4, eaao3104.

    Article  Google Scholar 

  35. Zhang, H. M.; Gustafsson, J. B.; Johansson, L. S. O. STM study of the electronic structure of PTCDA on \({\rm{Ag}}/{\rm{Si}}(111) - \sqrt 3 \times \sqrt 3 \). Chem. Phys. Lett. 2010, 485, 69–76.

    Article  CAS  Google Scholar 

  36. Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shih, C. K. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.

    Article  Google Scholar 

  37. Schmitz-Hübsch, T.; Fritz, T.; Sellam, F.; Staub, R.; Leo, K. Epitaxial growth of 3, 4, 9, 10-perylene-tetracarboxylic-dianhydride on Au(111): A STM and RHEED study. Phys. Rev. B 1997, 55, 7972–7976.

    Article  Google Scholar 

  38. Wagner, T.; Bannani, A.; Bobisch, C.; Karacuban, H.; Möller, R. The initial growth of PTCDA on Cu(111) studied by STM. J. Phys. Condens. Matter 2007, 19, 056009.

    Article  Google Scholar 

  39. Zhang, C. D.; Chen, Y. X.; Johnson, A.; Li, M. Y.; Li, L. J.; Mende, P. C.; Feenstra, R. M.; Shih, C. K. Probing critical point energies of transition metal dichalcogenides: Surprising indirect gap of single layer WSe2. Nano Lett. 2015, 15, 6494–6500.

    Article  CAS  Google Scholar 

  40. Zheng, Y. J.; Huang, Y. L.; Chen, Y. F.; Zhao, W. J.; Eda, G.; Spataru, C. D.; Zhang, W. J.; Chang, Y. H.; Li, L. J.; Chi, D. Z. et al. Heterointerface screening effects between organic monolayers and monolayer transition metal dichalcogenides. ACS Nano 2016, 10, 2476–2484.

    Article  CAS  Google Scholar 

  41. Wang, Q. Y.; Zhang, W. H.; Wang, L. L.; He, K.; Ma, X. C.; Xue, Q. K. Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates. J. Phys. Condens. Matter 2013, 25, 095002.

    Article  CAS  Google Scholar 

  42. Liu, H. J.; Jiao, L.; Xie, L.; Yang, F.; Chen, J. L.; Ho, W. K.; Gao, C. L.; Jia, J. F.; Cui, X. D.; Xie, M. H. Molecular-beam epitaxy of monolayer and bilayer WSe2: A scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy. 2D Mater. 2015, 2, 034004.

    Article  Google Scholar 

  43. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  44. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  45. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  46. Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

    Article  CAS  Google Scholar 

  47. Lee, K.; Murray, É. D.; Kong, L. Z.; Lundqvist, B. I.; Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 2010, 82, 081101(R).

    Article  Google Scholar 

  48. Klimes, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 2009, 22, 022201.

    Article  Google Scholar 

  49. Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2018FYA0305800 and 2018YFA0703700), the National Natural Science Foundation of China (Nos. 11774268 and 11974012), and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB30000000). W. J. gratefully acknowledges financial support from the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Nos. 16XNLQ01 and 19XNQ025). Calculations were performed at the Physics Lab of High-Performance Computing of Renmin University of China, Shanghai Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Ji or Chendong Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Wu, L., Deng, J. et al. Band alignment and interlayer hybridization in monolayer organic/WSe2 heterojunction. Nano Res. 15, 1276–1281 (2022). https://doi.org/10.1007/s12274-021-3648-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3648-9

Keywords

Navigation