Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Nano Research
  3. Article

Searching novel complex solid solution electrocatalysts in unconventional element combinations

  • Research Article
  • Open Access
  • Published: 01 July 2021
  • volume 15, pages 4780–4784 (2022)
Download PDF

You have full access to this open access article

Nano Research Aims and scope Submit manuscript
Searching novel complex solid solution electrocatalysts in unconventional element combinations
Download PDF
  • Olga A. Krysiak1 na1,
  • Simon Schumacher2,3 na1,
  • Alan Savan4,
  • Wolfgang Schuhmann1,
  • Alfred Ludwig4,5 &
  • …
  • Corina Andronescu2,3 
  • 897 Accesses

  • 13 Citations

  • 3 Altmetric

  • Explore all metrics

  • Cite this article

Abstract

Despite outstanding accomplishments in catalyst discovery, finding new, more efficient, environmentally neutral, and noble metal-free catalysts remains challenging and unsolved. Recently, complex solid solutions consisting of at least five different elements and often named as high-entropy alloys have emerged as a new class of electrocatalysts for a variety of reactions. The multicomponent combinations of elements facilitate tuning of active sites and catalytic properties. Predicting optimal catalyst composition remains difficult, making testing of a very high number of them indispensable. We present the high-throughput screening of the electrochemical activity of thin film material libraries prepared by combinatorial co-sputtering of metals which are commonly used in catalysis (Pd, Cu, Ni) combined with metals which are not commonly used in catalysis (Ti, Hf, Zr). Introducing unusual elements in the search space allows discovery of catalytic activity for hitherto unknown compositions. Material libraries with very similar composition spreads can show different activities vs. composition trends for different reactions. In order to address the inherent challenge of the huge combinatorial material space and the inability to predict active electrocatalyst compositions, we developed a high-throughput process based on co-sputtered material libraries, and performed high-throughput characterization using energy dispersive X-ray spectroscopy (EDS), scanning transmission electron microscopy (SEM), X-ray diffraction (XRD) and conductivity measurements followed by electrochemical screening by means of a scanning droplet cell. The results show surprising material compositions with increased activity for the oxygen reduction reaction and the hydrogen evolution reaction. Such data are important input data for future data-driven materials prediction.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Yeh, J. W.; Chen, Y. L.; Lin, S. J.; Chen, S. K. High-entropy alloys—A new era of exploitation. MSF 2007, 560, 1–9.

    Article  CAS  Google Scholar 

  2. Guo, S.; Liu, C. T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progr. Nat. Sci. Mater. Int. 2011, 21, 433–146.

    Article  Google Scholar 

  3. Ye, Y. F.; Wang, Q.; Lu, J.; Liu, C. T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362.

    Article  CAS  Google Scholar 

  4. Löffler, T.; Savan, A.; Garzón-Manjón, A.; Meischein, M.; Scheu, C.; Ludwig, A.; Schuhmann, W. Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticles. ACS Energy Lett. 2019, 4, 1206–1214.

    Article  Google Scholar 

  5. Wu, D. S.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Gueye, I.; Seo, O.; Kim, J.; Hiroi, S.; Sakata, O., et al. On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles. Chem. Sci. 2020, 11, 12731–12736.

    Article  CAS  Google Scholar 

  6. Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158.

    Article  CAS  Google Scholar 

  7. Ludwig, A. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. npj Comput. Mater. 2019, 5, 70.

    Article  Google Scholar 

  8. Ludwig, A.; Zarnetta, R.; Hamann, S.; Savan, A.; Thienhaus, S. Development of multifunctional thin films using high-throughput experimentation methods. Int. J. Mater. Res. 2008, 10, 1144–1149.

    Article  Google Scholar 

  9. Gao, S. J.; Hao, S. Y.; Huang, Z. N.; Yuan, Y. F.; Han, S.; Lei, L. C.; Zhang, X. W.; Shahbazian-Yassar, R.; Lu, J. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat. Commun. 2020, 11, 2016.

    Article  CAS  Google Scholar 

  10. Li, Z. M.; Ludwig, A.; Savan, A.; Springer, H.; Raabe, D. Combinatorial metallurgical synthesis and processing of high-entropy alloys. J. Mater. Res. 2018, 33, 3156–3169.

    Article  CAS  Google Scholar 

  11. Glasscott, M. W.; Pendergast, A. D.; Goines, S.; Bishop, A. R.; Hoang, A. T.; Renault, C.; Dick, J. E. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat. Commun. 2019, 10, 2650.

    Article  Google Scholar 

  12. Qiu, H. J.; Fang, G.; Gao, J. J.; Wen, Y. R.; Lv, J.; Li, H. L.; Xie, G. Q.; Liu, X. J.; Sun, S. H. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Materials Lett. 2019, 1, 526–533.

    Article  CAS  Google Scholar 

  13. Pedersen, J. K.; Batchelor, T. A. A.; Bagger, A.; Rossmeisl, J. High-Entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 2020, 10, 2169–2176.

    Article  CAS  Google Scholar 

  14. Chen, H.; Lin, W. W.; Zhang, Z. H.; Jie, K. C.; Mullins, D. R.; Sang, X. H.; Yang, S. Z.; Jafta, C. J.; Bridges, C. A.; Hu, X. B., et al. Mechanochemical synthesis of high entropy oxide materials under ambient conditions: Dispersion of catalysts via entropy maximization. ACS Materials Lett. 2019, 1, 83–88.

    Article  CAS  Google Scholar 

  15. Löffler, T.; Meyer, H.; Savan, A.; Wilde, P.; Garzón Manjón, A.; Chen, Y. T.; Ventosa, E.; Scheu, C.; Ludwig, A.; Schuhmann, W. Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv. Energy Mater. 2018, 8, 1802269.

    Article  Google Scholar 

  16. Qiu, H. J.; Fang, G.; Wen, Y. R.; Liu, P.; Xie, G. Q.; Liu, X. J.; Sun, S. H. Nanoporous high-entropy alloys for highly stable and efficient catalysts. J. Mater. Chem. A 2019, 7, 6499–6506.

    Article  CAS  Google Scholar 

  17. Batchelor, T. A. A.; Löffler, T.; Xiao, B.; Krysiak, O. A.; Strotkötter, V.; Pedersen, J. K.; Clausen, C. M.; Savan, A.; Li, Y. J.; Schuhmann, W., et al. Complex solid solution electrocatalyst discovery by computational prediction and high-throughput experimentation. Angew. Chem., Int. Ed. 2021, 60, 6932–6937.

    Article  CAS  Google Scholar 

  18. Tsai, C. F.; Yeh, K. Y.; Wu, P. W.; Hsieh, Y. F.; Lin, P. Effect of platinum present in multi-element nanoparticles on methanol oxidation. J. Alloys Compd. 2009, 478, 868–871.

    Article  CAS  Google Scholar 

  19. Yusenko, K. V.; Riva, S.; Carvalho, P. A.; Yusenko, M. V.; Arnaboldi, S.; Sukhikh, A. S.; Hanfland, M.; Gromilov, S. A. First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater. 2017, 138, 22–27.

    Article  CAS  Google Scholar 

  20. Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J., Nie, A. M.; Pu, T. C.; Rehwoldt, M., et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

    Article  CAS  Google Scholar 

  21. Xie, P. F.; Yao, Y. G.; Huang, Z. N.; Liu, Z. Y.; Zhang, J. L.; Li, T. Y.; Wang, G. F.; Shahbazian-Yassar, R.; Hu, L. B.; Wang, C. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 2019, 10, 4011.

    Article  Google Scholar 

  22. Schäfer, D.; Mardare, C.; Savan, A.; Sanchez, M. D.; Mei, B.; Xia, W.; Muhler, M.; Ludwig, A.; Schuhmann, W. High-throughput characterization of Pt supported on thin film oxide material libraries applied in the oxygen reduction reaction. Anal. Chem. 2011, 1916–1923.

    Google Scholar 

  23. Grote, J. P.; Zeradjanin, A. R.; Cherevko, S.; Savan, A.; Breitbach, B.; Ludwig, A.; Mayrhofer, K. J. J. Screening of material libraries for electrochemical CO2 reduction catalysts—Improving selectivity of Cu by mixing with Co. J. Catal. 2016, 343, 248–256.

    Article  CAS  Google Scholar 

  24. Sliozberg, K.; Schäfer, D.; Erichsen, T.; Meyer, R.; Khare, C.; Ludwig, A.; Schuhmann, W. High-throughput screening of thin-film semiconductor material libraries I: System development and case study for Ti-W-O. ChemSusChem 2015, 8, 1270–1278.

    Article  CAS  Google Scholar 

  25. Batchelor, T. A. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. High-entropy alloys as a discovery platform for electrocatalysis. Joule 2019, 3, 834–845.

    Article  CAS  Google Scholar 

  26. Löffler, T.; Savan, A.; Meyer, H.; Meischein, M.; Strotkötter, V.; Ludwig, A.; Schuhmann, W. Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves. Angew. Chem., Int. Ed. 2020, 59, 5844–5850.

    Article  Google Scholar 

  27. Sarkar, S.; Peter, S. C. An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorg. Chem. Front. 2018, 5, 2060–2080.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) in the framework of the projects AN 1570/2-1 (C. A., S. S.) and LU 1175/31-1) (A. L). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement CasCat [833408], W. S.).

Funding

Funding note: Open Access funding enabled and organized by Projekt DEAL.

Author information

Author notes
  1. Olga A. Krysiak and Simon Schumacher contributed equally to this work.

Authors and Affiliations

  1. Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany

    Olga A. Krysiak & Wolfgang Schuhmann

  2. Chemical Technology III, Faculty of Chemistry, Carl-Benz-Straße 199, D-47057, Duisburg, Germany

    Simon Schumacher & Corina Andronescu

  3. CENIDE - Center for Nanointegration University Duisburg Essen, Carl-Benz-Straße 199, D-47057, Duisburg, Germany

    Simon Schumacher & Corina Andronescu

  4. Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany

    Alan Savan & Alfred Ludwig

  5. ZGH, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany

    Alfred Ludwig

Authors
  1. Olga A. Krysiak
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Simon Schumacher
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Alan Savan
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Wolfgang Schuhmann
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Alfred Ludwig
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Corina Andronescu
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Wolfgang Schuhmann, Alfred Ludwig or Corina Andronescu.

Electronic Supplementary Material

Searching novel complex solid solution electrocatalysts in unconventional element combinations

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’ s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krysiak, O.A., Schumacher, S., Savan, A. et al. Searching novel complex solid solution electrocatalysts in unconventional element combinations. Nano Res. 15, 4780–4784 (2022). https://doi.org/10.1007/s12274-021-3637-z

Download citation

  • Received: 01 February 2021

  • Revised: 27 May 2021

  • Accepted: 01 June 2021

  • Published: 01 July 2021

  • Issue Date: June 2022

  • DOI: https://doi.org/10.1007/s12274-021-3637-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • high-entropy alloys
  • electrocatalysis
  • high-throughput screening
  • thin films
  • hydrogen evolution reaction
  • oxygen reduction reaction

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

High entropy Nanomaterials

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature