Skip to main content
Log in

Trinity immune enhancing nanoparticles for boosting antitumor immune responses of immunogenic chemotherapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Certain chemo drugs have been reported to potentially induce tumor-specific immune recognition by triggering immunogenic cell death (ICD), which provides a promising alternative way for cancer immunotherapy. However, the immunogenic effects of such treatments are still weak and robust systemic antitumor immune responses are rarely seen when these agents were used alone. Herein, we proposed a trinity immune enhancing nanoparticles (TIENs) for boosting antitumor immune responses of chemo agents. The TIENs was constructed with Food and Drug Administration (FDA) approved polylactic acid (PLA), canonical proton-sponging cationic polymer polyethyleneimine (PEI), and Toll-like receptor 9 (TLR9) agonist cytosine phosphate guanine oligodeoxynucleotide (CpG-ODN). In in vitro studies, the TIENs was proved to (1) promote antigen capturing, (2) antigen-presenting cells (APCs) activation, and (3) antigen cross-presentation. In in vivo studies, intratumorally injected TIENs greatly enhanced antitumor effect and robust immune responses of oxaliplatin and doxorubicin in murine CT26 and 4T1 tumor models, respectively. Furthermore, after decoration with a detachable shielding, the TIENs was proved to be effective in promoting the antitumor effects of chemo agents after intravenous injection. The combination of TIENs with clinically widely used chemo agents should be meaningful in boosting effective antitumor immune responses and cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489.

    Article  CAS  Google Scholar 

  2. Gattinoni, L.; Powell, D. J.; Rosenberg, S. A.; Restifo, N. P. Adoptive immunotherapy for cancer: Building on success. Nat. Rev. Immunol. 2006, 6, 383–393.

    Article  CAS  Google Scholar 

  3. Finck, A.; Gill, S. I.; June, C. H. Cancer immunotherapy comes of age and looks for maturity. Nat. Commun. 2020, 11, 3325.

    Article  CAS  Google Scholar 

  4. Wei, S. C.; Duffy, C. R.; Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018, 8, 1069–1086.

    Article  Google Scholar 

  5. Leach, D. R.; Krummel, M. F.; Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996, 271, 1734–1736.

    Article  CAS  Google Scholar 

  6. Hodi, F. S.; O’Day, S. J.; McDermott, D. F.; Weber, R. W.; Sosman, J. A.; Haanen, J. B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J. C. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723.

    Article  CAS  Google Scholar 

  7. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264.

    Article  CAS  Google Scholar 

  8. Massarelli, E.; William, W.; Johnson, F.; Kies, M.; Ferrarotto, R.; Guo, M.; Feng, L.; Lee, J. J.; Tran, H.; Kim, Y. U. et al. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: A phase 2 clinical trial. JAMA Oncol. 2019, 5, 67–73.

    Article  Google Scholar 

  9. Cheng, H. J.; Sun, G. D.; Chen, H.; Li, Y.; Han, Z. J.; Li, Y. B.; Zhang, P.; Yang, L. X.; Li, Y. M. Trends in the treatment of advanced hepatocellular carcinoma: Immune checkpoint blockade immunotherapy and related combination therapies. Am J Cancer Res 2019, 9, 1536–1545.

    CAS  Google Scholar 

  10. Brahmer, J.; Reckamp, K. L.; Baas, P.; Crinò, L.; Eberhardt, W. E. E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E. E.; Holgado, E. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 2015, 373, 123–135.

    Article  CAS  Google Scholar 

  11. Rizvi, N. A.; Hellmann, M. D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J. J.; Lee, W.; Yuan, J. D.; Wong, P.; Ho, T. S. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015, 348, 124–128.

    Article  CAS  Google Scholar 

  12. Duan, Q. Q.; Zhang, H. L.; Zheng, J. N.; Zhang, L. J. Turning Cold into Hot: Firing up the tumor microenvironment. Trends Cancer 2020, 6, 605–618.

    Article  CAS  Google Scholar 

  13. Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218.

    Article  CAS  Google Scholar 

  14. Sevenich, L. Turning “cold” into “hot” tumors-opportunities and challenges for radio-immunotherapy against primary and metastatic Brain cancers. Front. Oncol. 2019, 9, 163.

    Article  Google Scholar 

  15. Ma, S.; Song, W. T.; Xu, Y. D.; Si, X. H.; Zhang, Y.; Tang, Z. H.; Chen, X. S. A ROS-responsive aspirin polymeric prodrug for modulation of tumor microenvironment and cancer immunotherapy. CCS Chem. 2020, 2, 390–400.

    Article  CAS  Google Scholar 

  16. Si, X. H.; Ji, G. F.; Ma, S.; Xu, Y. D.; Zhao, J. Y.; Huang, Z. C.; Zhang, Y.; Song, W. T.; Tang, Z. H. Biodegradable implants combined with immunogenic chemotherapy and immune checkpoint therapy for peritoneal metastatic carcinoma postoperative treatment. ACS Biomater. Sci. Eng. 2020, 6, 5281–5289.

    Article  CAS  Google Scholar 

  17. Song, W. T.; Shen, L. M.; Wang, Y.; Liu, Q.; Goodwin, T. J.; Li, J. J.; Dorosheva, O.; Liu, T. Z.; Liu, R. H.; Huang, L. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat. Commun. 2018, 9, 2237.

    Article  Google Scholar 

  18. Han, X.; Wang, R.; Xu, J.; Chen, Q.; Liang, C.; Chen, J. W.; Zhao, J. Y.; Chu, J. C.; Fan, Q.; Archibong, E. et al. In situ thermal ablation of tumors in combination with nano-adjuvant and immune checkpoint blockade to inhibit cancer metastasis and recurrence. Biomaterials 2019, 224, 119490.

    Article  CAS  Google Scholar 

  19. Fournier, C.; Rivera Vargas, T.; Martin, T.; Melis, A.; Apetoh, L. Immunotherapeutic properties of chemotherapy. Curr. Opin. Pharmacol. 2017, 35, 83–88.

    Article  CAS  Google Scholar 

  20. Cook, A. M.; Lesterhuis, W. J.; Nowak, A. K.; Lake, R. A. Chemotherapy and immunotherapy: Mapping the road ahead. Curr. Opin. Immunol. 2016, 39, 23–29.

    Article  CAS  Google Scholar 

  21. Ghiringhelli, F.; Apetoh, L. Chemotherapy and immunomodulation: From immunogenic chemotherapies to novel therapeutic strategies. Future Oncol. 2013, 9, 469–472.

    Article  CAS  Google Scholar 

  22. Pusuluri, A.; Wu, D.; Mitragotri, S. Immunological consequences of chemotherapy: Single drugs, combination therapies and nanoparticle-based treatments. J. Control. Release 2019, 305, 130–154.

    Article  CAS  Google Scholar 

  23. Misset, J. L.; Bleiberg, H.; Sutherland, W.; Bekradda, M.; Cvitkovic, E. Oxaliplatin clinical activity: A review. Crit. Rev. Oncol. Hematol. 2000, 35, 75–93.

    Article  CAS  Google Scholar 

  24. Chen, D. S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10.

    Article  Google Scholar 

  25. Elamanchili, P.; Diwan, M.; Cao, M.; Samuel, J. Characterization of poly(D, L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 2004, 22, 2406–2412.

    Article  CAS  Google Scholar 

  26. Wang, X.; Uto, T.; Sato, K.; Ide, K.; Akagi, T.; Okamoto, M.; Kaneko, T.; Akashi, M.; Baba, M. Potent activation of antigen-specific T cells by antigen-loaded nanospheres. Immunol. Lett. 2005, 98, 123–130.

    Article  CAS  Google Scholar 

  27. Saito, E.; Kuo, R.; Kramer, K. R.; Gohel, N.; Giles, D. A.; Moore, B. B.; Miller, S. D.; Shea, L. D. Design of biodegradable nanoparticles to modulate phenotypes of antigen-presenting cells for antigen-specific treatment of autoimmune disease. Biomaterials 2019, 222, 119432.

    Article  CAS  Google Scholar 

  28. Hasegawa, H.; Matsumoto, T. Mechanisms of tolerance induction by dendritic cells in vivo. Front. Immunol. 2018, 9, 350.

    Article  Google Scholar 

  29. Horton, C.; Shanmugarajah, K.; Fairchild, P. J. Harnessing the properties of dendritic cells in the pursuit of immunological tolerance. Biomed. J. 2017, 40, 80–93.

    Article  Google Scholar 

  30. Randolph, G. J.; Angeli, V.; Swartz, M. A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 2005, 5, 617–628.

    Article  CAS  Google Scholar 

  31. Shao, J.; Tang, Z. H.; Sun, J. R.; Li, G.; Chen, X. S. Linear and four-armed poly(L-lactide)-block-poly(D-lactide) copolymers and their stereocomplexation with poly(lactide)s. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 1560–1567.

    Article  CAS  Google Scholar 

  32. Lutz, M. B.; Kukutsch, N.; Ogilvie, A. L. J.; Rößner, S.; Koch, F.; Romani, N.; Schuler, G. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 1999, 223, 77–92.

    Article  CAS  Google Scholar 

  33. Ma, S.; Song, W. T.; Xu, Y. D.; Si, X. H.; Lv, S. X.; Zhang, Y.; Tang, Z. H.; Chen, X. S. Rationally designed polymer conjugate for tumor-specific amplification of oxidative stress and boosting antitumor immunity. Nano Lett. 2020, 20, 2514–2521.

    Article  CAS  Google Scholar 

  34. Xu, Y. D.; Ma, S.; Si, X. H.; Zhao, J. Y.; Yu, H. Y.; Ma, L. L.; Song, W. T.; Tang, Z. H. Polyethyleneimine-CpG nanocomplex as an in situ vaccine for boosting anticancer immunity in melanoma. Macromol. Biosci. 2021, 21, 2000207.

    Article  CAS  Google Scholar 

  35. Cheng, T.; Miao, J. H.; Kai, D.; Zhang, H. J. Polyethylenimine-mediated CpG oligodeoxynucleotide delivery stimulates bifurcated cytokine induction. ACS Biomater. Sci. Eng. 2018, 4, 1013–1018.

    Article  CAS  Google Scholar 

  36. Jiang, X.; Qu, W.; Pan, D.; Ren, Y.; Williford, J. M.; Cui, H. G.; Luijten, E.; Mao, H. Q. Plasmid-templated shape control of condensed DNA-block copolymer nanoparticles. Adv. Mater. 2013, 25, 227–232.

    Article  CAS  Google Scholar 

  37. Duong, H. T. T.; Thambi, T.; Yin, Y.; Lee, J. E.; Seo, Y. K.; Jeong, J. H.; Lee, D. S. Smart pH-responsive nanocube-controlled delivery of DNA vaccine and chemotherapeutic drugs for chemoimmunotherapy. ACS Appl. Mater. Interfaces 2019, 11, 13058–13068.

    Article  CAS  Google Scholar 

  38. Akinc, A.; Thomas, M.; Klibanov, A. M.; Langer, R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 2005, 7, 657–663.

    Article  CAS  Google Scholar 

  39. Cao, Y.; Huang, H. Y.; Chen, L. Q.; Du, H. H.; Cui, J. H.; Zhang, L. W.; Lee, B. J.; Cao, Q. R. Enhanced lysosomal escape of pH-responsive polyethylenimine-betaine functionalized carbon nanotube for the codelivery of survivin small interfering RNA and doxorubicin. ACS Appl. Mater. Interfaces 2019, 11, 9763–9776.

    Article  CAS  Google Scholar 

  40. Min, Y. Z.; Roche, K. C.; Tian, S. M.; Eblan, M. J.; McKinnon, K. P.; Caster, J. M.; Chai, S. J.; Herring, L. E.; Zhang, L. Z.; Zhang, T. et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 877–882.

    Article  CAS  Google Scholar 

  41. Patel, R. B.; Ye, M. Z.; Carlson, P. M.; Jaquish, A.; Zangl, L.; Ma, B.; Wang, Y. Y.; Arthur, I.; Xie, R. S.; Brown, R. J. et al. Development of an in situ cancer vaccine via combinational radiation and bacterial-membrane-coated nanoparticles. Adv. Mater. 2019, 31, 1902626.

    Article  CAS  Google Scholar 

  42. Chang, T. Z.; Stadmiller, S. S.; Staskevicius, E.; Champion, J. A. Effects of ovalbumin protein nanoparticle vaccine size and coating on dendritic cell processing. Biomater. Sci. 2017, 5, 223–233.

    Article  CAS  Google Scholar 

  43. Song, W. T.; Das, M.; Chen, X. S. Nanotherapeutics for immunooncology: A crossroad for new paradigms. Trends Cancer 2020, 6, 288–298.

    Article  CAS  Google Scholar 

  44. Lin, M. L.; Zhan, Y. F.; Villadangos, J. A.; Lew, A. M. The cell biology of cross-presentation and the role of dendritic cell subsets. Immunol. Cell Biol. 2008, 86, 353–362.

    Article  CAS  Google Scholar 

  45. Segura, E.; Albiston, A. L.; Wicks, I. P.; Chai, S. Y.; Villadangos, J. A. Different cross-presentation pathways in steady-state and inflammatory dendritic cells. Proc. Natl. Acad. Sci. USA 2009, 106, 20377–20381.

    Article  CAS  Google Scholar 

  46. Joffre, O. P.; Segura, E.; Savina, A.; Amigorena, S. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 2012, 12, 557–569.

    Article  CAS  Google Scholar 

  47. Warrier, V. U.; Makandar, A. I.; Garg, M.; Sethi, G.; Kant, R.; Pal, J. K.; Yuba, E.; Gupta, R. K. Engineering anti-cancer nanovaccine based on antigen cross-presentation. Biosci. Rep. 2019, 39, BSR20193220.

    Article  CAS  Google Scholar 

  48. Zhu, G. Z.; Lynn, G. M.; Jacobson, O.; Chen, K.; Liu, Y.; Zhang, H. M.; Ma, Y.; Zhang, F. W.; Tian, R.; Ni, Q. Q. et al. Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nat. Commun. 2017, 8, 1954.

    Article  Google Scholar 

  49. Zhao, Y. R.; Lee, R. J.; Liu, L. T.; Dong, S. Y.; Zhang, J.; Zhang, Y. C.; Yao, Y. C.; Lu, J. H.; Meng, Q. F.; Xie, J. et al. Multifunctional drug carrier based on PEI derivatives loaded with small interfering RNA for therapy of liver cancer. Int. J. Pharm. 2019, 564, 214–224.

    Article  CAS  Google Scholar 

  50. Xu, J.; Wang, H.; Xu, L. G.; Chao, Y.; Wang, C. Y.; Han, X.; Dong, Z. L.; Chang, H.; Peng, R.; Cheng, Y. Y. et al. Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy. Biomaterials 2019, 207, 1–9.

    Article  CAS  Google Scholar 

  51. Guermonprez, P.; Saveanu, L.; Kleijmeer, M.; Davoust, J.; van Endert, P.; Amigorena, S. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 2003, 425, 397–402.

    Article  CAS  Google Scholar 

  52. Sakuishi, K.; Apetoh, L.; Sullivan, J. M.; Blazar, B. R.; Kuchroo, V. K.; Anderson, A. C. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 2010, 207, 2187–2194.

    Article  CAS  Google Scholar 

  53. Kuai, R.; Yuan, W. M.; Son, S.; Nam, J.; Xu, Y.; Fan, Y. C.; Schwendeman, A.; Moon, J. J. Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Sci. Adv. 2018, 4, eaao1736.

    Article  Google Scholar 

  54. Gao, F.; Zhang, C.; Qiu, W. X.; Dong, X.; Zheng, D. W.; Wu, W.; Zhang, X. Z. PD-1 blockade for improving the antitumor efficiency of polymer-doxorubicin nanoprodrug. Small 2018, 14, 1802403.

    Article  Google Scholar 

  55. Guan, X. W.; Guo, Z. P.; Lin, L.; Chen, J.; Tian, H. Y.; Chen, X. S. Ultrasensitive pH triggered charge/size dual-rebound gene delivery system. Nano Lett. 2016, 16, 6823–6831.

    Article  CAS  Google Scholar 

  56. Zhao, H. R.; Heindel, N. D. Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method. Pharm. Res. 1991, 8, 400–402.

    Article  CAS  Google Scholar 

  57. Zou, W.; Wolchok, J. D.; Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Trans. Med. 2016, 8, 328rv4.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 51973215, 52025035, 52003268, 51829302, and 51833010), Bureau of International Cooperation Chinese Academy of Sciences (No. 121522KYSB20200029), the Jilin Province Science and Technology Development Plan (No. 2020122331JC), and the support from the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2020232).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wantong Song or Zhaohui Tang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Ma, S., Zhao, J. et al. Trinity immune enhancing nanoparticles for boosting antitumor immune responses of immunogenic chemotherapy. Nano Res. 15, 1183–1192 (2022). https://doi.org/10.1007/s12274-021-3622-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3622-6

Keywords

Navigation