Skip to main content
Log in

Spatial compartmentalization of metal nanoparticles within metal-organic frameworks for tandem reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fabrication of multifunctional catalysts has always been the pursuit of synthetic chemists due to their efficiency, cost-effectiveness, and environmental friendliness. However, it is difficult to control multi-step reactions in one-pot, especially the spatial compartmentalization of incompatible active sites. Herein, we constructed metal-organic framework (MOF) composites which regulate the location distribution of metal nanoparticles according to the reaction path and coupled with the diffusion of substrates to achieve tandem reaction. The designed UiO-66-Pt-Au catalyst showed good activity and selectivity in hydrosilylation-hydrogenation tandem reaction, because the uniform microporous structures can control the diffusion path of reactants and intermediates, and Pt and Au nanoparticles were arranged in core-shell spatial distribution in UiO-66. By contrast, the low selectivity of catalysts with random deposition and physical mixture demonstrated the significance of artificial control to the spatial compartmentalization of active sites in tandem catalytic reactions, which provides a powerful approach for designing high-performance and multifunctional heterogeneous catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, X. S.; Bao, X. Y.; Guo, W. P.; Lee, F. Y. Immobilizing catalysts on porous materials. Mater. Today 2006, 9, 32–39.

    Article  CAS  Google Scholar 

  2. Wilson, K.; Lee, A. F. Rational design of heterogeneous catalysts for biodiesel synthesis. Catal. Sci. Technol. 2012, 2, 884–897.

    Article  CAS  Google Scholar 

  3. Rudroff, F.; Mihovilovic, M. D.; Gröger, H.; Snajdrova, R.; Iding, H.; Bornscheuer, U. T. Opportunities and challenges for combining chemo-and biocatalysis. Nat. Catal. 2018, 1, 12–22.

    Article  Google Scholar 

  4. Litman, Z. C.; Wang, Y.; Zhao, H.; Hartwig, J. F. Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature 2018, 560, 355–359.

    Article  CAS  Google Scholar 

  5. Lee, J. M.; Na, Y.; Han, H.; Chang, S. Cooperative multi-catalyst systems for one-pot organic transformations. Chem. Soc. Rev. 2004, 33, 302–312.

    Article  CAS  Google Scholar 

  6. Climent, M. J.; Corma, A.; Iborra, S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem. Rev. 2011, 111, 1072–1133.

    Article  CAS  Google Scholar 

  7. Climent, M. J.; Corma, A.; Iborra, S.; Sabater, M. J. Heterogeneous catalysis for tandem reactions. ACS Catal. 2014, 4, 870–891.

    Article  CAS  Google Scholar 

  8. Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci. 2016, 7, 866–880.

    Article  CAS  Google Scholar 

  9. He, C.; Wu, Q. J.; Mao, M. J.; Zou, Y. H.; Liu, B. T.; Huang, Y. B.; Cao, R. Multifunctional gold nanoparticles@imidazolium-based cationic covalent triazine frameworks for efficient tandem reactions. CCS Chem. 2020, 2, 2368–2380.

    Google Scholar 

  10. Lee, L. C.; Lu, J.; Weck, M.; Jones, C. W. Acid-base bifunctional shell cross-linked micelle nanoreactor for one-pot tandem reaction. ACS Catal. 2016, 6, 784–787.

    Article  CAS  Google Scholar 

  11. Sancheti, S. P.; Urvashi; Shah, M. P.; Patil, N. T. Ternary catalysis: A stepping stone toward multicatalysis. ACS Catal. 2020, 10, 3462–3489.

    Article  CAS  Google Scholar 

  12. Li, H.; Bhadury, P. S.; Riisager, A.; Yang, S. One-pot transformation of polysaccharides via multi-catalytic processes. Catal. Sci. Technol. 2014, 4, 4138–4168.

    Article  CAS  Google Scholar 

  13. Li, X. L.; Zhang, B. Y.; Tang, L. L.; Goh, T. W.; Qi, S. Y.; Volkov, A.; Pei, Y. C.; Qi, Z. Y.; Tsung, C. K.; Stanley, L. et al. Cooperative multifunctional catalysts for nitrone synthesis: Platinum nanoclusters in amine-functionalized metal-organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 16371–16375.

    Article  CAS  Google Scholar 

  14. Corma, A. Heterogeneous catalysis: Understanding for designing, and designing for applications. Angew. Chem., Int. Ed. 2016, 55, 6112–6113.

    Article  CAS  Google Scholar 

  15. Merino, E.; Verde-Sesto, E.; Maya, E. M.; Iglesias, M.; Sánchez, F.; Corma, A. Synthesis of structured porous polymers with acid and basic sites and their catalytic application in cascade-type reactions. Chem. Mater. 2013, 25, 981–988.

    Article  CAS  Google Scholar 

  16. Wasilke, J. C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Concurrent tandem catalysis. Chem. Rev. 2005, 105, 1001–1020.

    Article  CAS  Google Scholar 

  17. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Article  Google Scholar 

  18. Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.

    Article  CAS  Google Scholar 

  19. Cui, X. L.; Chen, K. J.; Xing, H. B.; Yang, Q. W.; Krishna, R.; Bao, Z. B.; Wu, H.; Zhou, W.; Dong, X. L.; Han, Y. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 2016, 353, 141–144.

    Article  CAS  Google Scholar 

  20. Li, B.; Wen, H. M.; Zhou, W.; Xu, J. Q.; Chen, B. L. Porous metal-organic frameworks: Promising materials for methane storage. Chem 2016, 1, 557–580.

    Article  CAS  Google Scholar 

  21. Mason, J. A.; Oktawiec, J.; Taylor, M. K.; Hudson, M. R.; Rodriguez, J.; Bachman, J. E.; Gonzalez, M. I.; Cervellino, A.; Guagliardi, A.; Brown, C. M. et al. Methane storage in flexible metal-organic frameworks with intrinsic thermal management. Nature 2015, 527, 357–361.

    Article  CAS  Google Scholar 

  22. Wang, C. H.; Liu, X. L.; Demir, N. K.; Chen, J. P.; Li, K. Applications of water stable metal-organic frameworks. Chem. Soc. Rev. 2016, 45, 5107–5134.

    Article  CAS  Google Scholar 

  23. Fan, Y.; Zhang, J.; Shen, Y.; Zheng, B.; Zhang, W. N.; Huo, F. W. Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Res. 2021, 14, 1–28.

    Article  Google Scholar 

  24. Hu, X. J.; Li, Z. X.; Xue, H.; Huang, X. S.; Cao, R.; Liu, T. F. Designing a bifunctional brønsted acid-base heterogeneous catalyst through precise installation of ligands on metal-organic frameworks. CCS Chem. 2019, 2, 616–622.

    Article  Google Scholar 

  25. Wang, B. Q.; Zhao, M. T.; Li, L. X.; Huang, Y.; Zhang, X.; Guo, C.; Zhang, Z. C.; Cheng, H. F.; Liu, W. X.; Shang, J. et al. Ultra-thin metal-organic framework nanoribbons. Natl. Sci. Rev. 2020, 7, 46–52.

    Article  CAS  Google Scholar 

  26. Qin, Y. J.; Han, X.; Li, Y. P.; Han, A. J.; Liu, W. X.; Xu, H. J.; Liu, J. F. Hollow mesoporous metal-organic frameworks with enhanced diffusion for highly efficient catalysis. ACS Catal. 2020, 10, 5973–5978.

    Article  CAS  Google Scholar 

  27. Lian, X. Z.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J. L.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H. C. Enzyme-MOF (metal-organic framework) composites. Chem. Soc. Rev. 2017, 46, 3386–3401.

    Article  CAS  Google Scholar 

  28. Dong, M. J.; Zhao, M.; Ou, S.; Zou, C.; Wu, C. D. A luminescent dye@MOF platform: Emission fingerprint relationships of volatile organic molecules. Angew. Chem., Int. Ed. 2014, 53, 1575–1579.

    Article  CAS  Google Scholar 

  29. Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.

    Article  CAS  Google Scholar 

  30. O’Neill, L. D.; Zhang, H. F.; Bradshaw, D. Macro-/microporous MOF composite beads. J. Mater. Chem. 2010, 20, 5720–5726.

    Article  Google Scholar 

  31. Guan, J. J.; Hu, Y.; Wang, Y.; Li, H. F.; Xu, Z. L.; Zhang, T.; Wu, P.; Zhang, S. Y.; Xiao, G. W.; Ji, W. L. et al. Controlled encapsulation of functional organic molecules within metal-organic frameworks: In situ crystalline structure transformation. Adv. Mater. 2017, 29, 1606290.

    Article  Google Scholar 

  32. Xu, Z. L.; Xiao, G. W.; Li, H. F.; Shen, Y.; Zhang, J.; Pan, T.; Chen, X. Y.; Zheng, B.; Wu, J. S.; Li, S. et al. Compartmentalization within self-assembled metal-organic framework nanoparticles for tandem reactions. Adv. Funct. Mater. 2018, 28, 1802479.

    Article  Google Scholar 

  33. Shahid, S.; Nijmeijer, K.; Nehache, S.; Vankelecom, I.; Deratani, A.; Quemener, D. MOF-mixed matrix membranes: Precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties. J. Membr. Sci. 2015, 492, 21–31.

    Article  CAS  Google Scholar 

  34. Zhang, Q.; Liu, B. M.; Wang, J.; Li, Q. F.; Li, D. X.; Guo, S. J.; Xiao, Y. B.; Zeng, Q. H.; He, W. C.; Zheng, M. Y. et al. The optimized interfacial compatibility of metal-organic frameworks enables a high-performance quasi-solid metal battery. ACS Energy Lett. 2020, 5, 2919–2926.

    Article  CAS  Google Scholar 

  35. Chen, L. Y.; Huang, W. H.; Wang, X. J.; Chen, Z. J.; Yang, X. F.; Luque, R.; Li, Y. W. Catalytically active designer crown-jewel Pd-based nanostructures encapsulated in metal-organic frameworks. Chem. Commun. 2017, 53, 1184–1187.

    Article  CAS  Google Scholar 

  36. Chen, J. Z.; Liu, R. L.; Guo, Y. Y.; Chen, L. M.; Gao, H. Selective hydrogenation of biomass-based 5-hydroxymethylfurfural over catalyst of palladium immobilized on amine-functionalized metal-organic frameworks. ACS Catal. 2015, 5, 722–733.

    Article  CAS  Google Scholar 

  37. Li, Y. A.; Yang, S.; Liu, Q. K.; Chen, G. J.; Ma, J. P.; Dong, Y. B. Pd(0)@UiO-68-AP: Chelation-directed bifunctional heterogeneous catalyst for stepwise organic transformations. Chem. Commun. 2016, 52, 6517–6520.

    Article  CAS  Google Scholar 

  38. Zhang, W. N.; Liu, Y. Y.; Lu, G.; Wang, Y.; Li, S. Z.; Cui, C. L.; Wu, J.; Xu, Z. L.; Tian, D. B.; Huang, W. et al. Mesoporous metal-organic frameworks with size-, shape-, and space-distribution-controlled pore structure. Adv. Mater. 2015, 27, 2923–2929.

    Article  CAS  Google Scholar 

  39. Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

    Article  CAS  Google Scholar 

  40. Dhakshinamoorthy, A.; Garcia, H. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 5262–5284.

    Article  CAS  Google Scholar 

  41. Yang, Q.; Liu, W. X.; Wang, B. Q.; Zhang, W. N.; Zeng, X. Q.; Zhang, C.; Qin, Y. J.; Sun, X. M.; Wu, T. P.; Liu, J. F. et al. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat. Commun. 2017, 8, 14429.

    Article  CAS  Google Scholar 

  42. Katz, M. J.; Brown, Z. J.; Colón, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem. Commun. 2013, 49, 9449–9451.

    Article  CAS  Google Scholar 

  43. Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640.

    Article  CAS  Google Scholar 

  44. Zhang, W. N.; Lu, G.; Cui, C. L.; Liu, Y. Y.; Li, S. Z.; Yan, W. J.; Xing, C.; Chi, Y. R.; Yang, Y. H.; Huo, F. W. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Adv. Mater. 2014, 26, 4056–4060.

    Article  CAS  Google Scholar 

  45. Shen, Y.; Pan, T.; Wu, P.; Huang, J. W.; Li, H. F.; Khalil, I. E.; Li, S.; Zheng, B.; Wu, J. S.; Wang, Q. et al. Regulating electronic status of platinum nanoparticles by metal-organic frameworks for selective catalysis. CCS Chem. 2020, 2, 1607–1614.

    Google Scholar 

  46. Liu, Y.; Shen, Y.; Zhang, W. N.; Weng, J. N.; Zhao, M. T.; Zhu, T. S.; Chi, Y. R.; Yang, Y. H.; Zhang, H.; Huo, F. W. Engineering channels of metal-organic frameworks to enhance catalytic selectivity. Chem. Commun. 2019, 55, 11770–11773.

    Article  CAS  Google Scholar 

  47. Zhao, M. Q.; Crooks, R. M. Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles. Angew. Chem., Int. Ed. 1999, 38, 364–366.

    Article  CAS  Google Scholar 

  48. Schanke, D.; Vada, S.; Blekkan, E. A.; Hilmen, A. M.; Hoff, A.; Holmen, A. Study of Pt-promoted cobalt CO hydrogenation catalysts. J. Catal. 1995, 156, 85–95.

    Article  CAS  Google Scholar 

  49. Corma, A.; González-Arellano, C.; Iglesias, M.; Sánchez, F. Gold nanoparticles and gold(III) complexes as general and selective hydrosilylation catalysts. Angew. Chem., Int. Ed. 2007, 46, 7820–7822.

    Article  CAS  Google Scholar 

  50. Kidonakis, M.; Stratakis, M. Ligandless regioselective hydrosilylation of allenes catalyzed by gold nanoparticles. Org. Lett. 2015, 17, 4538–4541.

    Article  CAS  Google Scholar 

  51. Şanlı, L. I.; Bayram, V.; Yarar, B.; Ghobadi, S.; Gürsel, S. A. Development of graphene supported platinum nanoparticles for polymer electrolyte membrane fuel cells: Effect of support type and impregnation-reduction methods. Int. J. Hydrog. Energy 2016, 41, 3414–3427.

    Article  Google Scholar 

  52. Wang, L. L.; Zhu, G. H.; Yu, W.; Zeng, J.; Yu, X. X.; Li, Q.; Xie, H. Q. Integrating nitrogen-doped graphitic carbon with Au nanoparticles for excellent solar energy absorption properties. Sol. Energy Mater. Sol. Cells 2018, 184, 1–8.

    Article  CAS  Google Scholar 

  53. Wang, C.; DeKrafft, K. E.; Lin, W. B. Pt nanoparticles@photoactive metal-organic frameworks: Efficient hydrogen evolution via synergistic photoexcitation and electron injection. J. Am. Chem. Soc. 2012, 134, 7211–7214.

    Article  CAS  Google Scholar 

  54. Xu, Z. D.; Yang, L. Z.; Xu, C. L. Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range. Anal. Chem. 2015, 87, 3438–3444.

    Article  CAS  Google Scholar 

  55. Chen, X. Y.; Qian, P. P.; Zhang, T.; Xu, Z. L.; Fang, C. Z.; Xu, X. J.; Chen, W. Z.; Wu, P.; Shen, Y.; Li, S. et al. Catalyst surfaces with tunable hydrophilicity and hydrophobicity: Metal-organic frameworks toward controllable catalytic selectivity. Chem. Commun. 2018, 54, 3936–3939.

    Article  CAS  Google Scholar 

  56. Wang, B. Q.; Liu, W. X.; Zhang, W. N.; Liu, J. F. Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size-and shape-selective reactions. Nano Res. 2017, 10, 3826–3835.

    Article  CAS  Google Scholar 

  57. Wei, Y. H.; Soh, S.; Apodaca, M. M.; Kim, J.; Grzybowski, B. A. Sequential reactions directed by core/shell catalytic reactors. Small 2010, 6, 857–863.

    Article  CAS  Google Scholar 

  58. Zuo, C. C.; Wei, W. J.; Zhou, Q.; Wu, S. P.; Li, S. J. Artificial active nanoreactor with nature-inspired sequential catalytic ability. ChemistrySelect 2017, 2, 6149–6153.

    Article  CAS  Google Scholar 

  59. Grzybowski, B. A. Chemistry in Motion: Reaction Diffusion Systems for Micro and Nanotechnology; John Wiley & Sons, Ltd: New York, 2009.

    Book  Google Scholar 

  60. Navalón, S.; Álvaro, M.; Dhakshinamoorthy, A.; García, H. Encapsulation of metal nanoparticles within metal-organic frameworks for the reduction of nitro compounds. Molecules 2019, 24, 3050.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Funds for Distinguished Young Scholars (No. 21625401), the National Natural Science Foundation (Nos. 21727808 and 21971114), the Jiangsu Provincial Founds for Natural Science Foundation (No. BK20200090), and National Key R&D Program of China (No. 2017YFA0207201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Shen or Fengwei Huo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, T., Khalil, I.E., Xu, Z. et al. Spatial compartmentalization of metal nanoparticles within metal-organic frameworks for tandem reaction. Nano Res. 15, 1178–1182 (2022). https://doi.org/10.1007/s12274-021-3621-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3621-7

Keywords

Navigation