Skip to main content
Log in

Tunable chiroptical application by encapsulating achiral lanthanide complexes into chiral MOF thin films

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Chiral metal-organic frameworks (chirMOFs) have been widely considered on enantioselective adsorption/separation, asymmetric catalysis, biological and nonlinear optical applications. However, chirMOFs are facing a great challenge in development of chiroptical thin films with circularly polarized luminescence (CPL) property. Here, we first report CPL thin films by encapsulating achiral lanthanide complexes Ln(acac)3 (Ln = EuaTbbGdc) into the pores of surface-coordinated chirMOF thin films (SURchirMOF) [Zn2(cam)2dabco]n with layer by layer (lbl) encapsulation strategy. Due to the unique combination of chiral porous MOF and adjustable luminescent complexes in the host-guest thin films, the obtained Ln(acac)3@SURchirMOF possess strong and tunable CPL property with high dissymmetry factors. The compared CPL and fluorescent lifetime results show that the advantage of this preparation strategy can effectively achieve energy transfer from Ln(acac)3 to SURchirMOF, resulting in an excellent CPL performance. This study not only provides a novel strategy to develop new types of chiral thin films but also offers an efficient approach for tunable chiroptical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, H. C.; Chowdhury, S.; Ellman, J. A. Asymmetric synthesis of amines using tert-butanesulfinamide. Nat. Protoc. 2013, 8, 2271–2280.

    Article  CAS  Google Scholar 

  2. Song, J.; Chen, D. F.; Gong, L. Z. Recent progress in organocatalytic asymmetric total syntheses of complex indole alkaloids. Natl. Sci. Rev. 2017, 4, 381–396.

    Article  CAS  Google Scholar 

  3. Kou, X. Z.; Shao, Q. H.; Ye, C. H.; Yang, G. Q.; Zhang, W. B. Asymmetric aza-wacker-type cyclization of N-Ts hydrazine-tethered tetrasubstituted olefins: Synthesis of pyrazolines bearing one quaternary or two vicinal stereocenters. J. Am. Chem. Soc. 2018, 140, 7587–7597.

    Article  CAS  Google Scholar 

  4. Yutthalekha, T.; Wattanakit, C.; Lapeyre, V.; Nokbin, S.; Warakulwit, C.; Limtrakul, J.; Kuhn, A. Asymmetric synthesis using chiral-encoded metal. Nat. Commun. 2016, 7, 12678.

    Article  CAS  Google Scholar 

  5. Xue, Y. P.; Cao, C. H.; Zheng, Y. G. Enzymatic asymmetric synthesis of chiral amino acids. Chem. Soc. Rev. 2018, 47, 1516–1561.

    Article  CAS  Google Scholar 

  6. Scanlon, S.; Aggeli, A.; Boden, N.; Koopmans, R. J.; Brydson, R.; Rayner, C. M. Peptide aerogels comprising self-assembling nanofibrils. Micro-Nano Lett. 2007, 2, 24–29.

    Article  CAS  Google Scholar 

  7. Wang, Z. G.; Ding, B. Q. Engineering DNA self-assemblies as templates for functional nanostructures. Acc. Chem. Res. 2014, 47, 1654–1662.

    Article  CAS  Google Scholar 

  8. Agarwal, N. P.; Matthies, M.; Gür, F. N.; Osada, K.; Schmidt, T. L. Block copolymer micellization as a protection strategy for DNA origami. Angew. Chem., Int. Ed. 2017, 56, 5460–5464.

    Article  CAS  Google Scholar 

  9. Luo, Z. L.; Zhang, S. G. Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society. Chem. Soc. Rev. 2012, 41, 4736–4754.

    Article  CAS  Google Scholar 

  10. Wang, L.; Li, Q. Photochromism into nanosystems: Towards lighting up the future nanoworld. Chem. Soc. Rev. 2018, 47, 1044–1097.

    Article  CAS  Google Scholar 

  11. Pop, F.; Zigon, N.; Avarvari, N. Main-group-based electro- and photoactive chiral materials. Chem. Rev. 2019, 119, 8435–8478.

    Article  CAS  Google Scholar 

  12. Huo, S. W.; Duan, P. F.; Jiao, T. F.; Peng, Q. M.; Liu, M. H. Self-assembled luminescent quantum dots to generate full-color and white circularly polarized light. Angew. Chem., Int. Ed. 2017, 56, 12174–12178.

    Article  CAS  Google Scholar 

  13. Li, M.; Li, S. H.; Zhang, D. D.; Cai, M. H.; Duan, L.; Fung, M. K.; Chen, C. F. Stable enantiomers displaying thermally activated delayed fluorescence: Efficient OLEDs with circularly polarized electroluminescence. Angew. Chem., Int. Ed. 2018, 57, 2889–2893.

    Article  CAS  Google Scholar 

  14. Yang, X. F.; Han, J. L.; Wang, Y. F.; Duan, P. F. Photon-upconverting chiral liquid crystal: Significantly amplified upconverted circularly polarized luminescence. Chem. Sci. 2019, 10, 172–178.

    Article  CAS  Google Scholar 

  15. Zinna, F.; Albano, G.; Taddeucci, A.; Colli, T.; Aronica, L. A.; Pescitelli, G.; Di Bari, L. Emergent nonreciprocal circularly polarized emission from an organic thin film. Adv. Mater. 2020, 32, 2002575.

    Article  CAS  Google Scholar 

  16. Zhang, M. M.; Dong, X. Y.; Wang, Z. Y.; Li, H. Y.; Li, S. J.; Zhao, X. L.; Zang, S. Q. AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(I) alkynyl clusters. Angew. Chem., Int. Ed. 2020, 59, 10052–10058.

    Article  CAS  Google Scholar 

  17. MacKenzie, L. E.; Pal, R. Circularly polarized lanthanide luminescence for advanced security inks. Nat. Rev. Chem. 2021, 5, 109–124.

    Article  CAS  Google Scholar 

  18. Jiang, Z. Y.; Wang, X. Q.; Ma, J. P.; Liu, Z. P. Aggregation-amplified circularly polarized luminescence from axial chiral boron difluoride complexes. Sci. China Chem. 2019, 62, 355–362.

    Article  CAS  Google Scholar 

  19. He, C. L.; Feng, Z. Y.; Shan, S. Z.; Wang, M. Q.; Chen, X.; Zou, G. Highly enantioselective photo-polymerization enhanced by chiral nanoparticles and in situ photopatterning of chirality. Nat. Commun. 2020, 11, 1188.

    Article  CAS  Google Scholar 

  20. Duan, Y. Y.; Han, L.; Zhang, J. L.; Asahina, S.; Huang, Z. H.; Shi, L.; Wang, B.; Cao, Y. Y.; Yao, Y.; Ma, L. G. et al. Optically active nanostructured ZnO films. Angew. Chem., Int. Ed. 2015, 54, 15170–15175.

    Article  CAS  Google Scholar 

  21. Shen, Z. C.; Wang, T. Y.; Shi, L.; Tang, Z. Y.; Liu, M. H. Strong circularly polarized luminescence from the supramolecular gels of an achiral gelator: Tunable intensity and handedness. Chem. Sci. 2015, 6, 4267–4272.

    Article  CAS  Google Scholar 

  22. Roose, J.; Leung, A. C. S.; Wang, J.; Peng, Q.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. A colour-tunable chiral AIEgen: Reversible coordination, enantiomer discrimination and morphology visualization. Chem. Sci. 2016, 7, 6106–6114.

    Article  CAS  Google Scholar 

  23. Zhao, B.; Pan, K.; Deng, J. P. Intense circularly polarized luminescence contributed by helical chirality of monosubstituted polyacetylenes. Macromolecules 2018, 51, 7104–7111.

    Article  CAS  Google Scholar 

  24. Zhang, J. H.; Dai, L. X.; Webster, A. M.; Chan, W. T. K.; Mackenzie, L. E.; Pal, R.; Cobb, S. L.; Law, G. L. Unusual magnetic field responsive circularly polarized luminescence probes with highly emissive chiral europium(III) complexes. Angew. Chem., Int. Ed. 2021, 60, 1004–1010.

    Article  CAS  Google Scholar 

  25. Haraguchi, S.; Numata, M.; Li, C.; Nakano, Y.; Fujiki, M.; Shinkai, S. Circularly polarized luminescence from supramolecular chiral complexes of achiral conjugated polymers and a neutral polysaccharide. Chem. Lett. 2009, 38, 254–255.

    Article  CAS  Google Scholar 

  26. Vijayaraghavan, R. K.; Abraham, S.; Akiyama, H.; Furumi, S.; Tamaoki, N.; Das, S. Photoresponsive glass-forming butadiene-based chiral liquid crystals with circularly polarized photoluminescence. Adv. Funct. Mater. 2008, 18, 2510–2517.

    Article  CAS  Google Scholar 

  27. Sang, Y. T.; Han, J. L.; Zhao, T. H.; Duan, P. F.; Liu, M. H. Circularly polarized luminescence in nanoassemblies: Generation, amplification, and application. Adv. Mater. 2020, 32, 1900110.

    Article  CAS  Google Scholar 

  28. Wang, C. T.; Chen, K. Q.; Xu, P.; Yeung, F.; Kwok, H. S.; Li, G. J. Fully chiral light emission from CsPbX3 perovskite nanocrystals enabled by cholesteric superstructure stacks. Adv. Funct. Mater. 2019, 29, 1903155.

    Article  Google Scholar 

  29. Gao, J. X.; Zhang, W. Y.; Wu, Z. G.; Zheng, Y. X.; Fu, D. W. Enantiomorphic perovskite ferroelectrics with circularly polarized luminescence. J. Am. Chem. Soc. 2020, 142, 4756–4761.

    Article  CAS  Google Scholar 

  30. Jing, X.; He, C.; Dong, D. P.; Yang, L. L.; Duan, C. Y. Homochiral crystallization of metal-organic silver frameworks: Asymmetric [3+2] cycloaddition of an azomethine ylide. Angew. Chem., Int. Ed. 2012, 51, 10127–10131.

    Article  CAS  Google Scholar 

  31. Liu, Y.; Xi, X. B.; Ye, C. C.; Gong, T. F.; Yang, Z. W.; Cui, Y. Chiral metal-organic frameworks bearing free carboxylic acids for organocatalyst encapsulation. Angew. Chem., Int. Ed. 2014, 53, 13821–13825.

    Article  CAS  Google Scholar 

  32. Gu, Z. G.; Zhan, C. H.; Zhang, J.; Bu, X. H. Chiral chemistry of metal-camphorate frameworks. Chem. Soc. Rev. 2016, 45, 3122–3144.

    Article  CAS  Google Scholar 

  33. Nickerl, G.; Henschel, A.; Grünker, R.; Gedrich, K.; Kaskel, S. Chiral metal-organic frameworks and their application in asymmetric catalysis and stereoselective separation. Chem. Ing. Tech. 2011, 83, 90–103.

    Article  CAS  Google Scholar 

  34. Gong, W.; Zhang, W. Q.; Son, F. A.; Yang, K. W.; Chen, Z. J.; Chen, X. F.; Jiang, J. W.; Liu, Y.; Farha, O. K.; Cui, Y. Topological strain-induced regioselective linker elimination in a chiral Zr(IV)-based metal-organic framework. Chem 2021, 7, 190–201.

    Article  CAS  Google Scholar 

  35. Wu, D.; Zhou, K.; Tian, J. D.; Liu, C. P.; Tian, J. Y.; Jiang, F. L.; Yuan, D. Q.; Zhang, J.; Chen, Q. H.; Hong, M. C. Induction of chirality in a metal-organic framework built from achiral precursors. Angew. Chem., Int. Ed. 2021, 60, 3087–3094.

    Article  CAS  Google Scholar 

  36. Ferguson, A.; Liu, L. J.; Tapperwijn, S. J.; Perl, D.; Coudert, F. X.; van Cleuvenbergen, S.; Verbiest, T.; van der Veen, M. A.; Telfer, S. G. Controlled partial interpenetration in metal-organic frameworks. Nat. Chem. 2016, 8, 250–257.

    Article  CAS  Google Scholar 

  37. Cui, Y. J.; Li, B.; He, H. J.; Zhou, W.; Chen, B. L.; Qian, G. D. Metal-organic frameworks as platforms for functional materials. Acc. Chem. Res. 2016, 49, 483–493.

    Article  CAS  Google Scholar 

  38. Ma, X. J.; Chai, Y. T.; Li, P.; Wang, B. Metal-organic framework films and their potential applications in environmental pollution control. Acc. Chem. Res. 2019, 52, 1461–1470.

    Article  CAS  Google Scholar 

  39. Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828.

    Article  CAS  Google Scholar 

  40. Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X. M. Metal azolate frameworks: From crystal engineering to functional materials. Chem. Rev. 2012, 112, 1001–1033.

    Article  CAS  Google Scholar 

  41. Das, S.; Xu, S. X.; Ben, T.; Qiu, S. L. Chiral recognition and separation by chirality-enriched metal-organic frameworks. Angew. Chem., Int. Ed. 2018, 57, 8629–8633.

    Article  CAS  Google Scholar 

  42. Zhang, S. Y.; Yang, C. X.; Shi, W.; Yan, X. P.; Cheng, P.; Wojtas, L.; Zaworotko, M. J. A chiral metal-organic material that enables enantiomeric identification and purification. Chem 2017, 3, 281–289.

    Article  CAS  Google Scholar 

  43. Martell, J. D.; Porter-Zasada, L. B.; Forse, A. C.; Siegelman, R. L.; Gonzalez, M. I.; Oktawiec, J.; Runčevski, T.; Xu, J. W.; Srebro-Hooper, M.; Milner, P. J. et al. Enantioselective recognition of ammonium carbamates in a chiral metal-organic framework. J. Am. Chem. Soc. 2017, 139, 16000–16012.

    Article  CAS  Google Scholar 

  44. Chang, L. M.; An, Y. Y.; Li, Q. H.; Gu, Z. G.; Han, Y. F.; Zhang, J. N-Heterocyclic carbene as a surface platform for assembly of homochiral metal-organic framework thin films in chiral sensing. ACS Appl. Mater. Interfaces 2020, 12, 38357–38364.

    Article  CAS  Google Scholar 

  45. Xuan, W. M.; Zhang, M. N.; Liu, Y.; Chen, Z. J.; Cui, Y. A chiral quadruple-stranded helicate cage for enantioselective recognition and separation. J. Am. Chem. Soc. 2012, 134, 6904–6907.

    Article  CAS  Google Scholar 

  46. Hou, X. D.; Xu, T. T.; Wang, Y.; Liu, S. J.; Tong, J.; Liu, B. Superficial chiral etching on achiral metal-organic framework for enantioselective sorption. ACS Appl. Mater. Interfaces 2017, 9, 32264–32269.

    Article  CAS  Google Scholar 

  47. Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 2000, 404, 982–986.

    Article  CAS  Google Scholar 

  48. Corella-Ochoa, M. N.; Tapia, J. B.; Rubin, H. N.; Lillo, V.; González-Cobos, J.; Núñez-Rico, J. L.; Balestra, S. R. G.; Almora-Barrios, N.; Lledós, M.; Güell-Bara, A. et al. Homochiral metal-organic frameworks for enantioselective separations in liquid chromatography. J. Am. Chem. Soc. 2019, 141, 14306–14316.

    Article  CAS  Google Scholar 

  49. Peng, Y. W.; Gong, T. F.; Zhang, K.; Lin, X. C.; Liu, Y.; Jiang, J. W.; Cui, Y. Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation. Nat. Commun. 2014, 5, 4406.

    Article  CAS  Google Scholar 

  50. Liu, Y.; Xuan, W. M.; Cui, Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv. Mater. 2010, 22, 4112–4135.

    Article  CAS  Google Scholar 

  51. Cho, S. H.; Ma, B. Q.; Nguyen, S. T.; Hupp, J. T.; Albrecht-Schmitt, T. E. A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem. Commun. 2006, 24, 2563–2565.

    Article  Google Scholar 

  52. Ma, L. Q.; Falkowski, J. M.; Abney, C.; Lin, W. B. A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. Nat. Chem. 2010, 2, 838–846.

    Article  CAS  Google Scholar 

  53. Han, J.; Lee, M. S.; Thallapally, P. K.; Kim, M.; Jeong, N. Identification of reaction sites on metal-organic framework-based asymmetric catalysts for carbonyl-ene reactions. ACS Catal. 2019, 9, 3969–3977.

    Article  CAS  Google Scholar 

  54. Liang, X. Q.; Zhang, F.; Zhao, H. X.; Ye, W.; Long, L. S.; Zhu, G. S. A proton-conducting lanthanide metal-organic framework integrated with a dielectric anomaly and second-order nonlinear optical effect. Chem. Commun. 2014, 50, 6513–6516.

    Article  CAS  Google Scholar 

  55. Wen, Q.; Tenenholtz, S.; Shimon, L. J. W.; Bar-Elli, O.; Beck, L. M.; Houben, L.; Cohen, S. R.; Feldman, Y.; Oron, D.; Lahav, M. et al. Chiral and SHG-active metal-organic frameworks formed in solution and on surfaces: Uniformity, morphology control, oriented growth, and postassembly functionalization. J. Am. Chem. Soc. 2020, 142, 14210–14221.

    Article  CAS  Google Scholar 

  56. Guo, Z. G.; Cao, R.; Wang, X.; Li, H. F.; Yuan, W. B.; Wang, G. J.; Wu, H. H.; Li, J. A multifunctional 3D ferroelectric and NLO-active porous metal-organic framework. J. Am. Chem. Soc. 2009, 131, 6894–6895.

    Article  CAS  Google Scholar 

  57. Fu, H. R.; Wang, N.; Wu, X. X.; Li, F. F.; Zhao, Y.; Ma, L. F.; Du, M. Circularly polarized room-temperature phosphorescence and encapsulation engineering for MOF-based fluorescent/phosphorescent white light-emitting devices. Adv. Opt. Mater. 2020, 8, 2000330.

    Article  CAS  Google Scholar 

  58. Zeng, M.; Ren, A.; Wu, W. B.; Zhao, Y. S.; Zhan, C. L.; Yao, J. N. Lanthanide MOFs for inducing molecular chirality of achiral stilbazolium with strong circularly polarized luminescence and efficient energy transfer for color tuning. Chem. Sci. 2020, 11, 9154–9161.

    Article  CAS  Google Scholar 

  59. Shang, W. L.; Zhu, X. F.; Liang, T. L.; Du, C.; Hu, L. Y.; Li, T. S.; Liu, M. H. Chiral reticular self-assembly of achiral AIEgen into optically pure metal-organic frameworks (MOFs) with dual mechano-switchable circularly polarized luminescence. Angew. Chem., Int. Ed. 2020, 59, 12811–12816.

    Article  CAS  Google Scholar 

  60. Qu, H.; Wang, Y.; Li, Z. H.; Wang, X. C.; Fang, H. X.; Tian, Z. Q.; Cao, X. Y. Molecular face-rotating cube with emergent chiral and fluorescence properties. J. Am. Chem. Soc. 2017, 139, 18142–18145.

    Article  CAS  Google Scholar 

  61. Zhao, T. H.; Han, J. L.; Jin, X.; Liu, Y.; Liu, M. H.; Duan, P. F. Enhanced circularly polarized luminescence from reorganized chiral emitters on the skeleton of a zeolitic imidazolate framework. Angew. Chem., Int. Ed. 2019, 58, 4978–4982.

    Article  CAS  Google Scholar 

  62. Hu, L. Y.; Li, K.; Shang, W. L.; Zhu, X. F.; Liu, M. H. Emerging cubic chirality in γCD-MOF for fabricating circularly polarized luminescent crystalline materials and the size effect. Angew. Chem., Int. Ed. 2020, 59, 4953–4958.

    Article  CAS  Google Scholar 

  63. Zhang, C.; Yan, Z. P.; Dong, X. Y.; Han, Z.; Li, S.; Fu, T.; Zhu, Y. Y.; Zheng, Y. X.; Niu, Y. Y.; Zang, S. Q. Enantiomeric MOF crystals using helical channels as palettes with bright white circularly polarized luminescence. Adv. Mater. 2020, 32, 2002914.

    Article  CAS  Google Scholar 

  64. Zhao, T. H.; Han, J. L.; Jin, X.; Zhou, M. H.; Liu, Y.; Duan, P. F.; Liu, M. H. Dual-mode induction of tunable circularly polarized luminescence from chiral metal-organic frameworks. Research 2020, 2020, 6452123.

    Article  CAS  Google Scholar 

  65. Okur, S.; Qin, P.; Chandresh, A.; Li, C.; Zhang, Z. J.; Lemmer, U.; Heinke, L. Eine enantioselektive elektronische Nase: Ein array nano-poröser homochiraler MOF-filme zur stereospezifischen erkennung chiraler geruchsmoleküle. Angew. Chem. 2021, 133, 3609–3614.

    Article  Google Scholar 

  66. Gu, Z. G.; Fu, H.; Neumann, T.; Xu, Z. X.; Fu, W. Q.; Wenzel, W.; Zhang, L.; Zhang, J.; Wöll, C. Chiral porous metacrystals: Employing liquid-phase epitaxy to assemble enantiopure metal-organic nanoclusters into molecular framework pores. ACS Nano 2016, 10, 977–983.

    Article  CAS  Google Scholar 

  67. Gu, Z. G.; Fu, W. Q.; Wu, X.; Zhang, J. Liquid-phase epitaxial growth of a homochiral MOF thin film on poly(L-DOPA) functionalized substrate for improved enantiomer separation. Chem. Commun. 2016, 52, 772–775.

    Article  CAS  Google Scholar 

  68. Huang, K.; Dong, X. L.; Ren, R. F.; Jin, W. Q. Fabrication of homochiral metal-organic framework membrane for enantioseparation of racemic diols. AIChE J. 2013, 59, 4364–4372.

    Article  CAS  Google Scholar 

  69. Chen, S. M.; Chang, L. M.; Yang, X. K.; Luo, T.; Xu, H.; Gu, Z. G.; Zhang, J. Liquid-phase epitaxial growth of azapyrene-based chiral metal-organic framework thin films for circularly polarized luminescence. ACS Appl. Mater. Interfaces 2019, 11, 31421–31426.

    Article  CAS  Google Scholar 

  70. Gu, Z. G.; Bürck, J.; Bihlmeier, A.; Liu, J. X.; Shekhah, O.; Weidler, P. G.; Azucena, C.; Wang, Z. B.; Heissler, S.; Gliemann, H. et al. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds. Chem.—Eur. J. 2014, 20, 9879–9882.

    Article  CAS  Google Scholar 

  71. Liu, B.; Shekhah, O.; Arslan, H. K.; Liu, J. X.; Wöll, C.; Fischer, R. A. Enantiopure metal-organic framework thin films: Oriented SURMOF growth and enantioselective adsorption. Angew. Chem., Int. Ed. 2012, 51, 807–810.

    Article  CAS  Google Scholar 

  72. Gu, Z. G.; Grosjean, S.; Bräse, S.; Wöll, C.; Heinke, L. Enantioselective adsorption in homochiral metal-organic frameworks: The pore size influence. Chem. Commun. 2015, 51, 8998–9001.

    Article  CAS  Google Scholar 

  73. Gu, Z. G.; Chen, Z.; Fu, W. Q.; Wang, F.; Zhang, J. Liquid-phase epitaxy effective encapsulation of lanthanide coordination compounds into MOF film with homogeneous and tunable white-light emission. ACS Appl. Mater. Interfaces 2015, 7, 28585–28590.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000), the National Key Research and Development Program of China (No. 2018YFA0208600), the National Natural Science Foundation of China (No. 21872148) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2018339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Gu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, R., Xiao, Y., Gu, Z. et al. Tunable chiroptical application by encapsulating achiral lanthanide complexes into chiral MOF thin films. Nano Res. 15, 1102–1108 (2022). https://doi.org/10.1007/s12274-021-3610-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3610-x

Keywords

Navigation