Skip to main content
Log in

Mechanisms of water oxidation on heterogeneous catalyst surfaces

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Water oxidation, an essential step in photosynthesis, has attracted intense research attention. Understanding the reaction pathways at the electrocatalyst/water interface is of great importance for the development of water oxidation catalysts. How the water is oxidized on the electrocatalyst surface by the positive charges is still an open question. This review summarizes current advances in studies on surface chemistry within the context of water oxidation, including the intermediates, reaction mechanisms, and their influences on the reaction kinetics. The Tafel analyses of some electrocatalysts and the rate-laws relative to charge consumption rates are also presented. Moreover, how the multiple charge transfer relies on the intermediate coverage and the accumulated charge numbers is outlined. Lastly, the intermediates and rate-determining steps on some water oxidation catalysts are discussed based on density functional theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Junge, W. Oxygenic photosynthesis: History, status and perspective. Quart. Rev. Biophys. 2019, 52, e1.

    Article  Google Scholar 

  2. Kornienko, N.; Zhang, J. Z.; Sakimoto, K. K.; Yang, P. D.; Reisner, E. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 2018, 13, 890–899.

    Article  CAS  Google Scholar 

  3. Jia, J. Y.; Seitz, L. C.; Benck, J. D.; Huo, Y. J.; Chen, Y. S.; Ng, J. W. D.; Bilir, T.; Harris, J. S.; Jaramillo, T. F. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 2016, 7, 13237.

    Article  CAS  Google Scholar 

  4. Govind Rajan, A.; Martirez, J. M. P.; Carter, E. A. Why do we use the materials and operating conditions we use for heterogeneous (photo)electrochemical water splitting? ACS Catal. 2020, 10, 11177–11234.

    Article  CAS  Google Scholar 

  5. Yang, X. G.; Wang, D. W. Photocatalysis: From fundamental principles to materials and applications. ACS Appl. Energy Mater. 2018, 1, 6657–6693.

    Article  CAS  Google Scholar 

  6. Wang, C. H.; Li, C. M.; Liu, J. L.; Guo, C. X. Engineering transition metal-based nanomaterials for high-performance electrocatalysis. Mater. Rep.: Energy 2021, 1, 100006.

    Google Scholar 

  7. Takashima, T.; Hashimoto, K.; Nakamura, R. Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. J. Am. Chem. Soc. 2012, 134, 1519–1527.

    Article  CAS  Google Scholar 

  8. Chen, C.; Hu, J. D.; Yang, X. G.; Yang, T. Y.; Qu, J. F.; Guo, C. X.; Li, C. M. Ambient-stable black phosphorus-based 2D/2D S-scheme heterojunction for efficient photocatalytic CO2 reduction to syngas. ACS Appl. Mater. Interfaces 2021, 13, 20162–20173.

    Article  CAS  Google Scholar 

  9. McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

    Article  CAS  Google Scholar 

  10. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920.

    Article  CAS  Google Scholar 

  11. Mu, R. T.; Zhao, Z. J.; Dohnálek, Z.; Gong, J. L. Structural motifs of water on metal oxide surfaces. Chem. Soc. Rev. 2017, 46, 1785–1806.

    Article  CAS  Google Scholar 

  12. Xiao, Y.; Hu, T.; Zhao, X.; Hu, F. X.; Yang, H. B.; Li, C. M. Thermo-selenizing to rationally tune surface composition and evolve structure of stainless steel to electrocatalytically boost oxygen evolution reaction. Nano Energy 2020, 75, 104949.

    Article  CAS  Google Scholar 

  13. Li, J.; Triana, C. A.; Wan, W.; Adiyeri Saseendran, D. P.; Zhao, Y.; Balaghi, S. E.; Heidari, S.; Patzke, G. R. Molecular and heterogeneous water oxidation catalysts: Recent progress and joint perspectives. Chem. Soc. Rev. 2021, 50, 2444–2485.

    Article  CAS  Google Scholar 

  14. Wang, S. C.; Liu, G.; Wang, L. Z. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 2019, 119, 5192–5247.

    Article  CAS  Google Scholar 

  15. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  16. Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.

    Article  CAS  Google Scholar 

  17. Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

    Article  CAS  Google Scholar 

  18. Cox, N.; Pantazis, D. A.; Lubitz, W. Current understanding of the mechanism of water oxidation in photosystem ii and its relation to XFEL data. Annu. Rev. Biochem. 2020, 89, 795–820.

    Article  CAS  Google Scholar 

  19. Kern, J.; Chatterjee, R.; Young, I. D.; Fuller, F. D.; Lassalle, L.; Ibrahim, M.; Gul, S.; Fransson, T.; Brewster, A. S.; Alonso-Mori, R. et al. Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 2018, 563, 421–425.

    Article  CAS  Google Scholar 

  20. Hunter, B. M.; Gray, H. B.; Müller, A. M. Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 2016, 116, 14120–14136.

    Article  CAS  Google Scholar 

  21. Umena, Y.; Kawakami, K.; Shen, J. R.; Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 2011, 473, 55–60.

    Article  CAS  Google Scholar 

  22. Kok, B.; Forbush, B.; McGloin, M. Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochem. Photobiol. 1970, 11, 457–475.

    Article  CAS  Google Scholar 

  23. Zouni, A.; Witt, H. T.; Kern, J.; Fromme, P.; Krauss, N.; Saenger, W.; Orth, P. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 2001, 409, 739–743.

    Article  CAS  Google Scholar 

  24. Haumann, M.; Liebisch, P.; Müller, C.; Barra, M.; Grabolle, M.; Dau, H. Photosynthetic O2 formation tracked by time-resolved X-ray experiments. Science 2005, 310, 1019–1021.

    Article  CAS  Google Scholar 

  25. Zaharieva, I.; Wichmann, J. M.; Dau, H. Thermodynamic limitations of photosynthetic water oxidation at high proton concentrations. J. Biol. Chem. 2011, 286, 18222–18228.

    Article  CAS  Google Scholar 

  26. Ananyev, G.; Roy-Chowdhury, S.; Gates, C.; Fromme, P.; Dismukes, G. C. The catalytic cycle of water oxidation in crystallized photosystem ii complexes: Performance and requirements for formation of intermediates. ACS Catal. 2019, 9, 1396–1407.

    Article  CAS  Google Scholar 

  27. Armstrong, D. A.; Huie, R. E.; Koppenol, W. H.; Lymar, S. V.; Merényi, G.; Neta, P.; Ruscic, B.; Stanbury, D. M.; Steenken, S.; Wardman, P. Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1139–1150.

    Article  CAS  Google Scholar 

  28. Hirakawa, T.; Yawata, K.; Nosaka, Y. Photocatalytic reactivity for O 2 and OH- radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition. Appl. Catal. A 2007, 325, 105–111.

    Article  CAS  Google Scholar 

  29. Attri, P.; Kim, Y. H.; Park, D. H.; Park, J. H.; Hong, Y. J.; Uhm, H. S.; Kim, K. N.; Fridman, A.; Choi, E. H. Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Sci. Rep. 2015, 5, 9332.

    Article  Google Scholar 

  30. Craig, M. J.; Coulter, G.; Dolan, E.; Soriano-López, J.; Mates-Torres, E.; Schmitt, W.; García-Melchor, M. Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential. Nat. Commun. 2019, 10, 4993.

    Article  CAS  Google Scholar 

  31. Ullman, A. M.; Brodsky, C. N.; Li, N.; Zheng, S. L.; Nocera, D. G. Probing edge site reactivity of oxidic cobalt water oxidation catalysts. J. Am. Chem. Soc. 2016, 138, 4229–4236.

    Article  CAS  Google Scholar 

  32. Fabbri, E.; Schmidt, T. J. Oxygen evolution reaction—The enigma in water electrolysis. ACS Catal. 2018, 8, 9765–9774.

    Article  CAS  Google Scholar 

  33. Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

    Article  CAS  Google Scholar 

  34. Geiger, S.; Kasian, O.; Ledendecker, M.; Pizzutilo, E.; Mingers, A. M.; Fu, W. T.; Diaz-Morales, O.; Li, Z. Z.; Oellers, T.; Fruchter, L. et al. The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 2018, 1, 508–515.

    Article  CAS  Google Scholar 

  35. Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338.

    Article  CAS  Google Scholar 

  36. Pan, Y. L.; Xu, X. M.; Zhong, Y. J.; Ge, L.; Chen, Y. B.; Veder, J. P. M.; Guan, D. Q.; O’Hayre, R.; Li, M. R.; Wang, G. X. et al. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 2020, 11, 2002.

    Article  CAS  Google Scholar 

  37. Mondal, S.; Mohanty, B.; Nurhuda, M.; Dalapati, S.; Jana, R.; Addicoat, M.; Datta, A.; Jena, B. K.; Bhaumik, A. A thiadiazole-based covalent organic framework: A metal-free electrocatalyst toward oxygen evolution reaction. ACS Catal. 2020, 10, 5623–5630.

    Article  CAS  Google Scholar 

  38. Lee, C. H.; Jun, B.; Lee, S. U. Metal-free oxygen evolution and oxygen reduction reaction bifunctional electrocatalyst in alkaline media: From mechanisms to structure-catalytic activity relationship. ACS Sustain. Chem. Eng. 2018, 6, 4973–4980.

    Article  CAS  Google Scholar 

  39. Zhang, Y. C.; Zhang, H. N.; Liu, A. A.; Chen, C. C.; Song, W. J.; Zhao, J. C. Rate-limiting O-O bond formation pathways for water oxidation on hematite photoanode. J. Am. Chem. Soc. 2018, 140, 3264–3269.

    Article  CAS  Google Scholar 

  40. Zhang, M.; Frei, H. Water oxidation mechanisms of metal oxide catalysts by vibrational spectroscopy of transient intermediates. Annu. Rev. Phys. Chem. 2017, 68, 209–231.

    Article  CAS  Google Scholar 

  41. Makoto, E.; Shohachi, K.; Shuichi, K.; Tetsuro, S. Temperature programmed desorption study of water adsorbed on metal oxides. I. Anatase and rutile. Bull. Chem. Soc. Jpn. 1978, 51, 3144–3149.

    Article  Google Scholar 

  42. Lindan, P. J. D.; Harrison, N. M.; Gillan, M. J. Mixed dissociative and molecular adsorption of water on the rutile (110) surface. Phys. Rev. Lett. 1998, 80, 762–765.

    Article  CAS  Google Scholar 

  43. Vittadini, A.; Selloni, A.; Rotzinger, F. P.; Grätzel, M. Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys. Rev. Lett. 1998, 81, 2954–2957.

    Article  CAS  Google Scholar 

  44. Yamamoto, S.; Kendelewicz, T.; Newberg, J. T.; Ketteler, G.; Starr, D. E.; Mysak, E. R.; Andersson, K. J.; Ogasawara, H.; Bluhm, H.; Salmeron, M. et al. Water adsorption on α-Fe2O3 (0001) at near ambient conditions. J. Phys. Chem. C 2010, 114, 2256–2266.

    Article  CAS  Google Scholar 

  45. Albanese, E.; Di Valentin, C.; Pacchioni, G. H2O adsorption on WO3 and WO3−x (001) surfaces. ACS Appl. Mater. Interfaces 2017, 9, 23212–23221.

    Article  CAS  Google Scholar 

  46. Zhang, L.; Wen, B.; Zhu, Y. N.; Chai, Z. W.; Chen, X. G.; Chen, M. Y. First-principles calculations of water adsorption on perfect and defect WO3 (001). Comput. Mater. Sci. 2018, 150, 484–490.

    Article  CAS  Google Scholar 

  47. Oshikiri, M.; Boero, M. Water molecule adsorption properties on the BiVO4 (100) surface. J. Phys. Chem. B 2006, 110, 9188–9194.

    Article  CAS  Google Scholar 

  48. Li, P.; Chen, X. Y.; He, H. C.; Zhou, X.; Zhou, Y.; Zou, Z. G. Polyhedral 30-faceted BiVO4 microcrystals predominantly enclosed by high-index planes promoting photocatalytic water-splitting activity. Adv. Mater. 2018, 30, 1703119.

    Article  CAS  Google Scholar 

  49. Hurtado-Aular, O.; Vidal, A. B.; Sierraalta, A.; Añez, R. Periodic DFT study of water adsorption on m-WO3(001), m-WO3(100), h-WO3(001) and h-WO3(100). Role of hydroxyl groups on the stability of polar hexagonal surfaces. Surf. Sci. 2020, 694, 121558.

    Article  CAS  Google Scholar 

  50. Sivasankar, N.; Weare, W. W.; Frei, H. Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc. 2011, 133, 12976–12979.

    Article  CAS  Google Scholar 

  51. Zhang, M.; de Respinis, M.; Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 2014, 6, 362–367.

    Article  CAS  Google Scholar 

  52. Zandi, O.; Hamann, T. W. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat. Chem. 2016, 8, 778–783.

    Article  CAS  Google Scholar 

  53. Diaz-Morales, O.; Ferrus-Suspedra, D.; Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 2016, 7, 2639–2645.

    Article  CAS  Google Scholar 

  54. Lang, C. C.; Li, J. Y.; Yang, K. R.; Wang, Y. X.; He, D.; Thorne, J. E.; Croslow, S.; Dong, Q.; Zhao, Y. Y.; Prostko, G. et al. Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts. Chem, in press, DOI: https://doi.org/10.1016/j.chempr.2021.03.015.

  55. Barroso, M.; Pendlebury, S. R.; Cowan, A. J.; Durrant, J. R. Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem. Sci. 2013, 4, 2724–2734.

    Article  CAS  Google Scholar 

  56. Kafizas, A.; Ma, Y. M.; Pastor, E.; Pendlebury, S. R.; Mesa, C.; Francàs, L.; Le Formal, F.; Noor, N.; Ling, M.; Sotelo-Vazquez, C. et al. Water oxidation kinetics of accumulated holes on the surface of a TiO2 photoanode: A rate law analysis. ACS Catal. 2017, 7, 4896–4903.

    Article  CAS  Google Scholar 

  57. Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

    Article  Google Scholar 

  58. Fang, Y. H.; Liu, Z. P. Tafel kinetics of electrocatalytic reactions: From experiment to first-principles. ACS Catal. 2014, 4, 4364–4376.

    Article  CAS  Google Scholar 

  59. Zhang, J. M.; Tao, H. B.; Kuang, M.; Yang, H. B.; Cai, W. Z.; Yan, Q. Y.; Mao, Q.; Liu, B. Advances in thermodynamic-kinetic model for analyzing the oxygen evolution reaction. ACS Catal. 2020, 10, 8597–8610.

    Article  CAS  Google Scholar 

  60. Nong, H. N.; Falling, L. J.; Bergmann, A.; Klingenhof, M.; Tran, H. P.; Spöri, C.; Mom, R.; Timoshenko, J.; Zichittella, G.; Knop-Gericke, A. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 2020, 587, 408–413.

    Article  CAS  Google Scholar 

  61. Peter, L. Kinetics and mechanisms of light-driven reactions at semiconductor electrodes: Principles and techniques. In Photo-electrochemical Water Splitting: Materials, Processes and Architectures; Lewerenz, H. J.; Peter, L., Eds.; The Royal Society of Chemistry: Cambridge, 2013; pp 19–51.

    Chapter  Google Scholar 

  62. Le Formal, F.; Pastor, E.; Tilley, S. D.; Mesa, C. A.; Pendlebury, S. R.; Grätzel, M.; Durrant, J. R. Rate law analysis of water oxidation on a hematite surface. J. Am. Chem. Soc. 2015, 137, 6629–6637.

    Article  CAS  Google Scholar 

  63. Ma, Y. M.; Mesa, C. A.; Pastor, E.; Kafizas, A.; Francàs, L.; Le Formal, F.; Pendlebury, S. R.; Durrant, J. R. Rate law analysis of water oxidation and hole scavenging on a BiVO4 photoanode. ACS Energy Lett. 2016, 1, 618–623.

    Article  CAS  Google Scholar 

  64. Mesa, C. A.; Francàs, L.; Yang, K. R.; Garrido-Barros, P.; Pastor, E.; Ma, Y. M.; Kafizas, A.; Rosser, T. E.; Mayer, M. T.; Reisner, E. et al. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat. Chem. 2020, 12, 82–89.

    Article  CAS  Google Scholar 

  65. Li, J. G.; Wan, W. C.; Triana, C. A.; Chen, H.; Zhao, Y. G.; Mavrokefalos, C. K.; Patzke, G. R. Reaction kinetics and interplay of two different surface states on hematite photoanodes for water oxidation. Nat. Commun. 2021, 12, 255.

    Article  CAS  Google Scholar 

  66. Li, J. G.; Wan, W. C.; Triana, C. A.; Novotny, Z.; Osterwalder, J.; Erni, R.; Patzke, G. R. Dynamic role of cluster cocatalysts on molecular photoanodes for water oxidation. J. Am. Chem. Soc. 2019, 141, 12839–12848.

    Article  CAS  Google Scholar 

  67. Zhang, Z. J.; Nagashima, H.; Tachikawa, T. Ultra-narrow depletion layers in a hematite mesocrystal-based photoanode for boosting multihole water oxidation. Angew. Chem., Int. Ed. 2020, 59, 9047–9054.

    Article  CAS  Google Scholar 

  68. Francàs, L.; Corby, S.; Selim, S.; Lee, D.; Mesa, C. A.; Godin, R.; Pastor, E.; Stephens, I. E. L.; Choi, K. S.; Durrant, J. R. Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts. Nat. Commun. 2019, 10, 5208.

    Article  CAS  Google Scholar 

  69. Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.

    Article  CAS  Google Scholar 

  70. Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Norskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.

    Article  CAS  Google Scholar 

  71. Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

    Article  CAS  Google Scholar 

  72. Valdés, Á.; Qu, Z. W.; Kroes, G. J.; Rossmeisl, J.; Nørskov, J. K. Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 2008, 112, 9872–9879.

    Article  CAS  Google Scholar 

  73. Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

    Article  CAS  Google Scholar 

  74. Bajdich, M.; García-Mota, M.; Vojvodic, A.; Nørskov, J. K.; Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 2013, 135, 13521–13530.

    Article  CAS  Google Scholar 

  75. Lin, Y. C.; Tian, Z. Q.; Zhang, L. J.; Ma, J. Y.; Jiang, Z.; Deibert, B. J.; Ge, R. X.; Chen, L. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10, 162.

    Article  CAS  Google Scholar 

  76. Gao, J. J.; Xu, C. Q.; Hung, S. F.; Liu, W.; Cai, W. Z.; Zeng, Z. P.; Jia, C. M.; Chen, H. M.; Xiao, H.; Li, J. et al. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J. Am. Chem. Soc. 2019, 141, 3014–3023.

    Article  CAS  Google Scholar 

  77. Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756.

    Article  CAS  Google Scholar 

  78. Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. ChemCatChem 2010, 2, 724–761.

    Article  CAS  Google Scholar 

  79. Hellman, A.; Iandolo, B.; Wickman, B.; Grönbeck, H.; Baltrusaitis, J. Electro-oxidation of water on hematite: Effects of surface termination and oxygen vacancies investigated by first-principles. Surf. Sci. 2015, 640, 45–49.

    Article  CAS  Google Scholar 

  80. Li, Y. F.; Liu, Z. P.; Liu, L. L.; Gao, W. G. Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings. J. Am. Chem. Soc. 2010, 132, 13008–13015.

    Article  CAS  Google Scholar 

  81. Hu, J.; Chen, W.; Zhao, X.; Su, H. B.; Chen, Z. Anisotropic electronic characteristics, adsorption, and stability of low-index BiVO4 surfaces for photoelectrochemical applications. ACS Appl. Mater. Interfaces 2018, 10, 5475–5484.

    Article  CAS  Google Scholar 

  82. Yang, J. X.; Wang, D. E.; Zhou, X.; Li, C. A theoretical study on the mechanism of photocatalytic oxygen evolution on BiVO4 in aqueous solution. Chem.—Eur. J. 2013, 19, 1320–1326.

    Article  CAS  Google Scholar 

  83. Zhang, X. Q.; Klaver, P.; van Santen, R.; van de Sanden, M. C. M.; Bieberle-Hütter, A. Oxygen evolution at hematite surfaces: The impact of structure and oxygen vacancies on lowering the overpotential. J. Phys. Chem. C 2016, 120, 18201–18208.

    Article  CAS  Google Scholar 

  84. Zhang, X. Q.; Cao, C. L.; Bieberle-Hütter, A. Orientation sensitivity of oxygen evolution reaction on hematite. J. Phys. Chem. C 2016, 120, 28694–28700.

    Article  CAS  Google Scholar 

  85. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

    Article  CAS  Google Scholar 

  86. Guan, J. Q.; Duan, Z. Y.; Zhang, F. X.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q. E.; Chen, J. Q.; Tang, C. H.; Li, C. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat. Catal. 2018, 1, 870–877.

    Article  CAS  Google Scholar 

  87. Gauthier, J. A.; Dickens, C. F.; Chen, L. D.; Doyle, A. D.; Nørskov, J. K. Solvation effects for oxygen evolution reaction catalysis on IrO2(110). J. Phys. Chem. C 2017, 121, 11455–11463.

    Article  CAS  Google Scholar 

  88. Kenmoe, S.; Spohr, E. Photooxidation of water on pristine, S- and N-doped TiO2(001) nanotube surfaces: A DFT + U study. J. Phys. Chem. C 2019, 123, 22691–22698.

    Article  CAS  Google Scholar 

  89. Yang, M. J.; He, H. C.; Liao, A. Z.; Huang, J.; Tang, Y.; Wang, J.; Ke, G. L.; Dong, F. Q.; Yang, L.; Bian, L. et al. Boosted water oxidation activity and kinetics on BiVO4 photoanodes with multihigh-index crystal facets. Inorg. Chem. 2018, 57, 15280–15288.

    Article  CAS  Google Scholar 

  90. Nguyen, M. T.; Piccinin, S.; Seriani, N.; Gebauer, R. Photo-oxidation of water on defective hematite(0001). ACS Catal. 2015, 5, 715–721.

    Article  CAS  Google Scholar 

  91. Li, X. N.; Wang, H. Y.; Yang, H. B.; Cai, W. Z.; Liu, S.; Liu, B. In situ/operando characterization techniques to probe the electrochemical reactions for energy conversion. Small Methods 2018, 2, 1700395.

    Article  CAS  Google Scholar 

  92. Deng, J. J.; Zhang, Q. Z.; Lv, X. X.; Zhang, D.; Xu, H.; Ma, D. L.; Zhong, J. Understanding photoelectrochemical water oxidation with X-ray absorption spectroscopy. ACS Energy Lett. 2020, 5, 975–993.

    Article  CAS  Google Scholar 

  93. Timoshenko, J.; Roldan Cuenya, B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 2021, 121, 882–961.

    Article  CAS  Google Scholar 

  94. Joya, K. S.; Sala, X. In situ Raman and surface-enhanced Raman spectroscopy on working electrodes: Spectroelectrochemical characterization of water oxidation electrocatalysts. Phys. Chem. Chem. Phys. 2015, 17, 21094–21103.

    Article  CAS  Google Scholar 

  95. Deng, Y. L.; Yeo, B. S. Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando Raman spectroscopy. ACS Catal. 2017, 7, 7873–7889.

    Article  CAS  Google Scholar 

  96. Qiu, Z.; Ma, Y.; Edvinsson, T. In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting. Nano Energy 2019, 66, 104118.

    Article  CAS  Google Scholar 

  97. Rao, R. R.; Kolb, M. J.; Giordano, L.; Pedersen, A. F.; Katayama, Y.; Hwang, J.; Mehta, A.; You, H.; Lunger, J. R.; Zhou, H. et al. Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces. Nat. Catal. 2020, 3, 516–525.

    Article  CAS  Google Scholar 

  98. Cheng, X.; Fabbri, E.; Yamashita, Y.; Castelli, I. E.; Kim, B.; Uchida, M.; Haumont, R.; Puente-Orench, I.; Schmidt, T. J. Oxygen evolution reaction on perovskites: A multieffect descriptor study combining experimental and theoretical methods. ACS Catal. 2018, 8, 9567–9578.

    Article  Google Scholar 

  99. Wang, D.; Sheng, T.; Chen, J. F.; Wang, H. F.; Hu, P. Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2. Nat. Catal. 2018, 1, 291–299.

    Article  CAS  Google Scholar 

  100. Cao, L. L.; Luo, Q. Q.; Chen, J. J.; Wang, L.; Lin, Y.; Wang, H. J.; Liu, X. K.; Shen, X. Y.; Zhang, W.; Liu, W. et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849.

    Article  CAS  Google Scholar 

  101. Ma, P. Y.; Zhang, S. C.; Zhang, M. T.; Gu, J. F.; Zhang, L.; Sun, Y. C.; Ji, W.; Fu, Z. Y. Hydroxylated high-entropy alloy as highly efficient catalyst for electrochemical oxygen evolution reaction. Sci. China Mater. 2020, 63, 2613–2619.

    Article  Google Scholar 

Download references

Acknowledgements

X. G. Y. and C. M. L. are supported by the National Natural Science Foundation of China (Nos. U1604121 and 22008163), Natural Science Foundation of Jiangsu Province (No. BK20180103), Jiangsu Laboratory for Biochemical Sensing and Biochip, and Jiangsu Key Laboratory for Micro and Nano Heat Fluid Flow Technology and Energy Application. Y. X. W. and D. W. W. acknowledge the support by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, Chemical Sciences, Geosciences, and Biosciences Division under Award Number DE-SC0020261.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaogang Yang or Dunwei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wang, Y., Li, C.M. et al. Mechanisms of water oxidation on heterogeneous catalyst surfaces. Nano Res. 14, 3446–3457 (2021). https://doi.org/10.1007/s12274-021-3607-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3607-5

Keywords

Navigation