Skip to main content

FluidFM for single-cell biophysics

Abstract

Fluidic force microscopy (FluidFM), which combines atomic force microscopy (AFM) with microchanneled cantilevers connected to a pressure controller, is a technique allowing the realization of force-sensitive nanopipette under aqueous conditions. FluidFM has unique advantages in simultaneous three-dimensional manipulations and mechanical measurements of biological specimens at the micro-/nanoscale. Over the past decade, FluidFM has shown its potential in biophysical assays particularly in the investigations at single-cell level, offering novel possibilities for discovering the underlying mechanisms guiding life activities. Here, we review the utilization of FluidFM to address biomechanical and biophysical issues in the life sciences. Firstly, the fundamentals of FluidFM are represented. Subsequently, the applications of FluidFM for biophysics at single-cell level are surveyed from several facets, including single-cell manipulations, single-cell force spectroscopy, and single-cell electrophysiology. Finally, the challenges and perspectives for future progressions are provided.

References

  1. Altschuler, S. J.; Wu, L. F. Cellular heterogeneity: Do differences make a difference? Cell 2010, 141, 559–563.

    CAS  Google Scholar 

  2. Pennisi, E. Single-cell sequencing tackles basic and biomedical questions. Science 2012, 336, 976–977.

    CAS  Google Scholar 

  3. Pelkmans, L. Using cell-to-cell variability—A new era in molecular biology. Science 2012, 336, 425–426.

    CAS  Google Scholar 

  4. Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 2015, 13, 497–508.

    CAS  Google Scholar 

  5. Raj, A.; van Oudenaarden, A. Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell 2008, 135, 216–226.

    CAS  Google Scholar 

  6. Marusyk, A.; Almendro, V.; Polyak, K. Intra-tumour heterogeneity: A looking glass for cancer? Nat. Rev. Cancer 2012, 12, 323–334.

    CAS  Google Scholar 

  7. Burrell, R. A.; McGranahan, N.; Bartek, J.; Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013, 501, 338–345.

    CAS  Google Scholar 

  8. Bedard, P. L.; Hansen, A. R.; Ratain, M. J.; Siu, L. L. Tumour heterogeneity in the clinic. Nature 2013, 501, 355–364.

    CAS  Google Scholar 

  9. Stuart, T.; Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 2019, 20, 257–272.

    CAS  Google Scholar 

  10. Wu, A. R.; Neff, N. F.; Kalisky, T.; Dalerba, P.; Treutlein, B.; Rothenberg, M. E.; Mburu, F. M.; Mantalas, G. L.; Sim, S.; Clarke, M. F. et al. Quantitative assessment of single-cell RNA-sequencing methods. Nat. Methods 2014, 11, 41–46.

    CAS  Google Scholar 

  11. Karemaker, I. D.; Vermeulen, M. Single-cell DNA methylation profiling: Technologies and biological applications. Trends Biotechnol. 2018, 36, 952–965.

    CAS  Google Scholar 

  12. Kang, C. C.; Yamauchi, K. A.; Vlassakis, J.; Sinkala, E.; Duncombe, T. A.; Herr, A. E. Single cell-resolution western blotting. Nat. Protoc. 2016, 11, 1508–1530.

    Google Scholar 

  13. Taheri-Araghi, S.; Brown, S. D.; Sauls, J. T.; McIntosh, D. B.; Jun, S. Sigle-cell physiology. Ann. Rev. Biophys. 2015, 44, 123–142

    CAS  Google Scholar 

  14. Patel, A. P.; Tirosh, I.; Trombetta, J. J.; Shalek, A. K.; Gillespie, S. M.; Wakimoto, H.; Cahill, D. P.; Nahed, B. V.; Curry, W. T.; Martuza, R. L. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014, 344, 1396–1401.

    CAS  Google Scholar 

  15. Deng, Q. L.; Ramsköld, D.; Reinius, B.; Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 2014, 343, 193–196.

    CAS  Google Scholar 

  16. Luquette, L. J.; Bohrson, C. L.; Sherman, M. A.; Park, P. J. Identification of somatic mutations in single cell DNA-seq using a spatial model of allelic imbalance. Nat. Commun. 2019, 10, 3908.

    Google Scholar 

  17. Dumont, S.; Prakash, M. Emergent mechanics of biological structures. Mol. Biol. Cell 2014, 25, 3461–3465.

    Google Scholar 

  18. Janmey, P. A.; McCulloch, C. A. Cell mechanics: Integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 2007, 9, 1–34.

    CAS  Google Scholar 

  19. Kim, D. H.; Wong, P. K.; Park, J.; Levchenko, A.; Sun, Y. Microengineered platforms for cell mechanobiology. Annu. Rev. Biomed. Eng. 2009, 11, 203–233.

    CAS  Google Scholar 

  20. Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 2007, 3, 413–438.

    Google Scholar 

  21. Wirtz, D.; Konstantopoulos, K.; Searson, P. C. The physics of cancer: The role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 2011, 11, 512–522.

    CAS  Google Scholar 

  22. Mitchell, M. J.; Jain, R. K.; Langer, R. Engineering and physical sciences in oncology: Challenges and opportunities. Nat. Rev. Cancer 2017, 17, 659–675.

    CAS  Google Scholar 

  23. Yamauchi, K. A.; Herr, A. E. Subcellular western blotting of single cells. Microsyst. Nanoeng. 2017, 3, 16079.

    CAS  Google Scholar 

  24. Yu, W. B.; Sharma, S.; Gimzewski, J. K.; Rao, J. Y. Nanocytology as a potential biomarker for cancer. Biomark. Med. 2017, 11, 213–216.

    CAS  Google Scholar 

  25. Meister, A.; Gabi, M.; Behr, P.; Studer, P.; Vörös, J.; Niedermann, P.; Bitterli, J.; Polesel-Maris, J.; Liley, M.; Heinzelmann, H. et al. FluidFM: Combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 2009, 9, 2501–2507.

    CAS  Google Scholar 

  26. Binnig, G.; Quate, C. F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930–933.

    CAS  Google Scholar 

  27. Li, M.; Xi, N.; Wang, Y. C.; Liu, L. Q. Advances in atomic force microscopy for single-cell analysis. Nano Res. 2019, 12, 703–718.

    Google Scholar 

  28. Dufrêne, Y. F.; Ando, T.; Garcia, R.; Alsteens, D.; Martinez-Martin, D.; Engel, A.; Gerber, C.; Muller, D. J. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 2017, 12, 295–307.

    Google Scholar 

  29. Krieg, M.; Fläschner, G.; Alsteens, D.; Gaub, B. M.; Roos, W. H.; Wuite, G. J. L.; Gaub, H. E.; Gerber, C.; Dufrêne, Y. F.; Muller, D. J. Atomic force microscopy-based mechanobiology. Nat. Rev. Phys. 2019, 1, 41–57.

    Google Scholar 

  30. Di Carlo, D. A mechanical biomarker of cell state in medicine. J. Lab. Autom. 2012, 17, 32–42.

    CAS  Google Scholar 

  31. Moeendarbary, E.; Harris, A. R. Cell mechanics: Principles, practices, and prospects. WIREs Syst. Biol. Med. 2014, 6, 371–388.

    Google Scholar 

  32. Li, M.; Dang, D.; Liu, L. Q.; Xi, N.; Wang Y. C. Atomic force microscopy in characterizing cell mechanics for biomedical applications: A review. IEEE Trans. NanoBiosci. 2017, 16, 523–540.

    Google Scholar 

  33. Harris, A. R.; Peter, L.; Bellis, J.; Baum, B.; Kabla, A. J.; Charras, G. T. Characterizing the mechanics of cultured cell monolayers. Proc. Natl. Acad. Sci. USA 2012, 109, 16449–16454.

    CAS  Google Scholar 

  34. Wu, P. H.; Aroush, D. R. B.; Asnacios, A.; Chen, W. C.; Dokukin, M. E.; Doss, B. L.; Durand-Smet, P.; Ekpenyong, A.; Guck, J.; Guz, N. V. et al. A comparison of methods to assess cell mechanical properties. Nat. Methods 2018, 15, 491–498.

    CAS  Google Scholar 

  35. Cross, S. E.; Jin, Y. S.; Rao, J. Y.; Gimzewski, J. K. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2007, 2, 780–783.

    CAS  Google Scholar 

  36. Plodinec, M.; Loparic, M.; Monnier, C. A.; Obermann, E. C.; Zanetti-Dallenbach, R.; Oertle, P.; Hyotyla, J. T.; Aebi, U.; Bentires-Alj, M.; Lim, R. Y. H.; Schoenenberger, C. A. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 2012, 7, 757–765.

    CAS  Google Scholar 

  37. Gavara, N.; Chadwick, R. S. Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips. Nat. Nanotechnol. 2012, 7, 733–736.

    CAS  Google Scholar 

  38. Garcia, R. Nanomechanical mapping of soft materials with the atomic force microscope: Methods, theory and applications. Chem. Soc. Rev. 2020, 49, 5850–5884.

    CAS  Google Scholar 

  39. Song, B.; Yang, R. G.; Xi, N.; Patterson, K. C.; Qu, C. G.; Lai, K. W. C. Cellular-level surgery using nano robots. J. Lab. Autom. 2012, 17, 425–434.

    CAS  Google Scholar 

  40. Han, S. W.; Nakamura, C.; Obataya, I.; Nakamura, N.; Miyake, J. A molecular delivery system by using AFM and nanoneedle. Biosens. Bioelectron. 2005, 20, 2120–2125.

    CAS  Google Scholar 

  41. Chen, X.; Kis, A.; Zettl, A.; Bertozzi, C. R. A cell nanoinjector based on carbon nanotubes. Proc. Natl. Acad. Sci. USA 2007, 104, 8218–8222.

    CAS  Google Scholar 

  42. Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 2000, 33, 15–22.

    CAS  Google Scholar 

  43. Zambelli, T.; Aebersold, M. J.; Behr, P.; Han, H.; Hirt, L.; Martinez, V.; Guillaume-Gentil, O.; Vörös, J. FluidFM: Development of the instrument as well as its applications for 2D and 3D lithography. In Open-Space Microfluidics: Concepts, Implementations, Applications. Delamarche, E.; Kaigala, G. V., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2018; pp 295–323.

    Google Scholar 

  44. Saha, P.; Duanis-Assaf, T.; Reches, M. Fundamentals and applications of FluidFM technology in single-cell studies. Adv. Mater. Interfaces 2020, 7, 2001115.

    CAS  Google Scholar 

  45. Li, M.; Xi, N.; Wang, Y. C.; Liu, L. Q. Atomic force microscopy for revealing micro/nanoscale mechanics in tumor metastasis: From single cells to microenvironmental cues. Acta Pharmacol. Sin. 2021, 42, 323–339.

    CAS  Google Scholar 

  46. Deladi, S.; Tas, N. R.; Berenschot, J. W.; Krijnen, G. J. M.; de Boer, M. J.; de Boer, J. H.; Peter, M.; Elwenspoek, M. C. Micromachined fountain pen for atomic force microscope-based nanopatterning. Appl. Phys. Lett. 2004, 85, 5361–5363.

    CAS  Google Scholar 

  47. Berenschot, E. J. W.; Burouni, N.; Schurink, B.; van Honschoten, J. W.; Sanders, R. G. P.; Truckenmuller, R.; Jansen, H. V.; Elwenspoek, M. C.; van Apeldoorn, A. A.; Tas, N. R. 3D nanofabrication of fluidic components by corner lithography. Small 2012, 5, 3823–3831.

    Google Scholar 

  48. Guillaume-Gentil, O.; Potthoff, E.; Ossola, D.; Franz, C. M.; Zambelli, T.; Vorholt, J. A. Force-controlled manipulation of single cells: From AFM to FluidFM. Trends Biotechnol. 2014, 32, 381–388.

    CAS  Google Scholar 

  49. Aramesh, M.; Forró, C.; Dorwling-Carter, L.; Lüchtefeld, I.; Schlotter, T.; Ihle, S. J.; Shorubalko, I.; Hosseini, V.; Momotenko, D.; Zambelli, T. et al. Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope. Nat. Nanotechnol. 2019, 14, 791–798.

    CAS  Google Scholar 

  50. Martinez, V.; Behr, P.; Drechsler, U.; Polesel-Maris, J.; Potthoff, E.; Vörös, J.; Zambelli, T. SU-8 hollow cantilevers for AFM cell adhesion studies. J. Micromech. Microeng. 2016, 26, 055006.

    Google Scholar 

  51. Helfricht, N.; Mark, A.; Dorwling-Carter, L.; Zambelli, T.; Papastavrou, G. Extending the limits of direct force measurements: Colloidal probes from sub-micron particles. Nanoscale 2017, 9, 9491–9501.

    CAS  Google Scholar 

  52. Guillaume-Gentil, O.; Mittelviefhaus, M.; Dorwling-Carter, L.; Zambelli, T.; Vorholt, J. A. FluidFM applications in single-cell biology. In Open-Space Microfluidics: Concepts, Implementations, Applications. Delamarche, E.; Kaigala, G. V., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2018; pp 325–354.

    Google Scholar 

  53. Konradi, R.; Acikgoz, C.; Textor, M. Polyoxazolines for nonfouling surface coatings-a direct comparison to the gold standard PEG. Macromol. Rapid Commun. 2012, 33, 1663–1676.

    CAS  Google Scholar 

  54. Weydert, S.; Zürcher, S.; Tanner, S.; Zhang, N.; Ritter, R.; Peter, T.; Aebersold, M. J.; Thompson-Steckel, G.; Forró, C. et al. Easy to apply polyoxazoline-based coating for precise and long-term control of neural patterns. Langmuir 2017, 33, 8594–8605.

    CAS  Google Scholar 

  55. Schlotter, T.; Weaver, S.; Forró, C.; Momotenko, D.; Vörös, J.; Zambelli, T.; Aramesh, M. Force-controlled formation of dynamic nanopores for single-biomolecule sensing and single-cell secretomics. ACS Nano 2020, 14, 12993–13003.

    Google Scholar 

  56. Guillaume-Gentil, O.; Zambelli, T.; Vorholt, J. A. Isolation of single mammalian cells from adherent cultures by fluidic force microscopy. Lab Chip 2014, 14, 402–414.

    CAS  Google Scholar 

  57. Martinez, V.; Forró, C.; Weydert, S.; Aebersold, M. J.; Dermutz, H.; Guillaume-Gentil, O.; Zambelli, T.; Vörös, J.; Demkó, L. Controlled single-cell deposition and patterning by highly flexible hollow cantilevers. Lab Chip 2016, 16, 1663–1674.

    CAS  Google Scholar 

  58. Collins, D. J.; Morahan, B.; Garcia-Bustos, J.; Doerig, C.; Plebanski, M.; Neild, A. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun. 2015, 6, 8686.

    CAS  Google Scholar 

  59. Xue, X. F.; Sun, Y. B.; Resto-Irizarry, A. M.; Yuan, Y.; Yong, K. M. A.; Zheng, Y.; Weng, S. N.; Shao, Y.; Chai, Y. M.; Studer, L. et al. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nat. Mater. 2018, 17, 633–641.

    CAS  Google Scholar 

  60. Li, Q. S., Lee, G. Y. H., Ong, C. N., Lim, C. T. AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun. 2008, 374, 609–613.

    CAS  Google Scholar 

  61. Li, M.; Liu, L. Q.; Xi, N.; Wang, Y. C.; Dong, Z. L.; Xiao, X. B.; Zhang, W. J. Atomic force microscopy imaging and mechanical properties measurement of red blood cells and aggressive cancer cells. Sci. China Life Sci. 2012, 55, 968–973.

    Google Scholar 

  62. Dimitriadis, E. K.; Horkay, F.; Maresca, J.; Kachar, B.; Chadwick, R. S. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 2002, 82, 2798–2810.

    CAS  Google Scholar 

  63. Hu, H.; Shi, B.; Breslin, C. M.; Gignac, L.; Peng, Y. T. A sub-micron spherical atomic force microscopic tip for surface measurements. Langmuir 2020, 36, 7861–7867.

    CAS  Google Scholar 

  64. Dörig, P.; Ossola, D.; Truong, A. M.; Graf, M.; Stauffer, F.; Vörös, J.; Zambelli, T. Exchangeable colloidal AFM probes for the quantification of irreversible and long-term interactions. Biophys. J. 2013, 105, 463–472.

    Google Scholar 

  65. Lüchtefeld, I.; Bartolozzi, A.; Morales, J. M.; Dobre, O.; Basso, M.; Zambelli, T.; Vassalli, M. Elasticity spectra as a tool to investigate actin cortex mechanics. J. Nanobiotechnol. 2020, 18, 147.

    Google Scholar 

  66. Hinterdorfer, P.; Dufrêne, Y. F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 2006, 3, 347–355.

    CAS  Google Scholar 

  67. Stiefel, P.; Schmidt, F. I.; Dörig, P.; Behr, P.; Zambelli, T.; Vorholt, J. A.; Mercer, J. Cooperative vaccinia infection demonstrated at the single-cell level using FluidFM. Nano Lett. 2012, 12, 4219–4227.

    CAS  Google Scholar 

  68. Guillaume-Gentil, O.; Potthoff, E.; Ossola, D.; Dörig, P.; Zambelli, T.; Vorholt, J. A. Force-controlled fluidic injection into single cell nuclei. Small 2013, 9, 1904–1907.

    CAS  Google Scholar 

  69. Liu, H. J.; Wen, J.; Xiao, Y.; Liu, J.; Hopyan, S.; Radisic, M.; Simmons, C. A.; Sun, Y. In situ mechanical characterization of the cell nucleus by atomic force microscopy. ACS Nano 2014, 8, 3821–3828.

    CAS  Google Scholar 

  70. Guillaume-Gentil, O.; Grindberg, R. V.; Kooger, R.; Dorwling-Carter, L.; Martinez, V.; Ossola, D.; Pilhofer, M.; Zambelli, T.; Vorholt, J. A. Tunable single-cell extraction for molecular analyses. Cell 2016, 166, 506–516.

    CAS  Google Scholar 

  71. Guillaume-Gentil, O.; Rey, T.; Kiefer, P.; Ibáñez, A. J.; Steinhoff, R.; Brönnimann, R.; Dorwling-Carter, L.; Zambelli, T.; Zenobi, R.; Vorholt, J. A. Single-cell mass spectrometry of metabolites extracted from live cells by fluidic force microscopy. Anal. Chem. 2017, 89, 5017–5023.

    CAS  Google Scholar 

  72. Weaver, V. M. Cell and tissue mechanics: The new cell biology frontier. Mol. Biol. Cell 2017, 28, 1815–1818.

    CAS  Google Scholar 

  73. Gardel, M. L. Moving beyond molecular mechanisms. J. Cell Biol. 2015, 208, 143–145.

    CAS  Google Scholar 

  74. Helenius, J.; Heisenberg, C. P.; Gaub, H. E.; Muller, D. J. Single-cell force spectroscopy. J. Cell Sci. 2008, 121, 1785–1791.

    CAS  Google Scholar 

  75. Friedrichs, J.; Helenius, J.; Muller, D. J. Quantifying cellular adhesion to extracellular matrix components by single-cell force spectroscopy. Nat. Protoc. 2010, 5, 1353–1361.

    CAS  Google Scholar 

  76. Müller, D. J.; Dufrêne, Y. F. Atomic force microscopy: A nanoscopic window on the cell surface. Trends Cell Biol. 2011, 21, 461–469.

    Google Scholar 

  77. Dufrêne, Y. F. Atomic force microscopy and chemical force microscopy of microbial cells. Nat. Protoc. 2008, 3, 1132–1138.

    Google Scholar 

  78. Dehullu, J.; Vorholt, J. A.; Lipke, P. N.; Dufrene, Y. F. Fluidic force microscopy captures amyloid bonds between microbial cells. Trends Microbiol. 2019, 27, 728–730.

    CAS  Google Scholar 

  79. Potthoff, E.; Guillaume-Gentil, O.; Ossola, D.; Polesel-Maris, J.; LeibundGut-Landmann, S.; Zambelli, T.; Vorholt, J. A. Rapid and serial quantification of adhesion forces of yeast and mammalian cells. PLoS One 2012, 7, e52712.

    CAS  Google Scholar 

  80. Potthoff, E.; Franco, D.; D’Alessandro, V.; Starck, C.; Falk, V.; Zambelli, T.; Vorholt, J. A.; Poulikakos, D.; Ferrari, A. Toward a rational design of surface textures promoting endothelialization. Nano Lett. 2014, 14, 1069–1079.

    CAS  Google Scholar 

  81. McGrath, J. S.; Quist, J.; Seddon, J. R. T.; Lai, S. C. S.; Lemay, S. G.; Bridle, H. L. Deformability assessment of waterborne protozoa using a microfluidic-enabled force microscopy probe. PLoS One 2016, 11, e0150438.

    Google Scholar 

  82. Sankaran, S.; Jaatinen, L.; Brinkmann, J.; Zambelli, T.; Vörös, J.; Jonkheijm, P. Cell adhesion on dynamic supramolecular surfaces probed by fluid force microscopy-based single-cell force spectroscopy. ACS Nano 2017, 11, 3867–3874.

    CAS  Google Scholar 

  83. Jaatinen, L.; Young, E.; Hyttinen, J.; Vörös, J.; Zambelli, T.; Demkó, L. Quantifying the effect of electric current on cell adhesion studied by single-cell force spectroscopy. Biointerphases 2016, 11, 011004.

    Google Scholar 

  84. Sancho, A.; Vandersmissen, I.; Craps, S.; Luttun, A.; Groll, J. A new strategy to measure intercellular adhesion forces in mature cell-cell contacts. Sci. Rep. 2017, 7, 46152.

    CAS  Google Scholar 

  85. Cohen, N.; Sarkar, S.; Hondroulis, E.; Sabhachandani, P.; Konry, T. Quantification of intercellular adhesion forces measured by fluid force microscopy. Talanta 2017, 174, 409–413.

    CAS  Google Scholar 

  86. Ryma, M.; Blöhbaum, J.; Singh, R.; Sancho, A.; Matuszak, J.; Cicha, I.; Groll, J. Easy-to-prepare coating of standard cell culture dishes for cell-sheet engineering using aqueous solutions of poly (2-n-propyloxazoline). ACS Biomater. Sci. Eng. 2019, 5, 1509–1517.

    CAS  Google Scholar 

  87. Wysotzki, P.; Sancho, A.; Gimsa, J.; Groll, J. A comparative analysis of detachment forces and energies in initial and mature cell-material interaction. Colloids Surf B Biointerfaces 2020, 190, 110894.

    CAS  Google Scholar 

  88. Sztilkovics, M.; Gerecsei, T.; Peter, B.; Saftics, A.; Kurunczi, S.; Szekacs, I.; Szabo, B.; Horvath, R. Single-cell adhesion force kinetics of cell populations from combined label-free optical biosensor and robotic fluidic force microscopy. Sci. Rep. 2020, 10, 61.

    CAS  Google Scholar 

  89. Veerachamy, S.; Yarlagadda, T.; Manivasagam, G.; Yarlagadda, P. K. Bacterial adherence and biofilm formation on medical implants: A review. Proc. Inst. Mech. Eng. H J. Eng. Med. 2014, 228, 1083–1099.

    Google Scholar 

  90. Arciola, C. R.; Campoccia, D.; Montanaro, L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018, 16, 397–409.

    CAS  Google Scholar 

  91. Dufrêne, Y. F. Sticky microbes: Forces in microbial cell adhesion. Trends Microbiol. 2015, 23, 376–382.

    Google Scholar 

  92. Potthoff, E.; Ossola, D.; Zambelli, T.; Vorholt, J. A. Bacterial adhesion force quantification by fluidic force microscopy. Nanoscale 2015, 7, 4070–4079.

    CAS  Google Scholar 

  93. Sprecher, K. S.; Hug, I.; Nesper, J.; Potthoff, E.; Mahi, M. A.; Sangermani, M.; Kaever, V.; Schwede, T.; Vorholt, J.; Jenal, U. Cohesive properties of the Caulobacter crescentus holdfast adhesin are regulated by a novel c-di-GMP effector protein. mBio 2017, 8, e00294–17.

    CAS  Google Scholar 

  94. Hoyer, L. L.; Cota, E. Candida albicans agglutinin-like sequence (Als) family vignettes: A review of Als protein structure and function. Front. Microbiol. 2016, 7, 280.

    Google Scholar 

  95. Dehullu, J.; Valotteau, C.; Herman-Bausier, P.; Garcia-Sherman, M.; Mittelviefhaus, M.; Vorholt, J. A.; Lipke, P. N.; Dufrene, Y. F. Fluidic force microscopy demonstrates that homophilic adhesion by Candida albicans Als proteins is mediated by amyloid bonds between cells. Nano Lett. 2019, 19, 3846–3853.

    CAS  Google Scholar 

  96. Hofherr, L.; Müller-Renno, C.; Ziegler, C. FluidFM as a tool to study adhesion forces of bacteria-optimization of parameters and comparison to conventional bacterial probe scanning force spectroscopy. PLoS One 2020, 15, e0227395.

    CAS  Google Scholar 

  97. Mittelviefhaus, M.; Müller, D. B.; Zambelli, T.; Vorholt, J. A. A modular atomic force microscopy approach reveals a large range of hydrophobic adhesion forces among bacterial members of the leaf microbiota. ISME J. 2019, 13, 1878–1882.

    CAS  Google Scholar 

  98. Mathelié-Guinlet, M.; Viela, F.; Viljoen, A.; Dehullu, J.; Dufrêne, Y. F. Single-molecule atomic force microscopy studies of microbial pathogens. Curr. Opin. Biomed. Eng. 2019, 12, 1–7.

    Google Scholar 

  99. Doll, K.; Yang, I.; Fadeeva, E.; Kommerein, N.; Szafrański, S. P.; der Wieden, G. B.; Greuling, A.; Winkel, A.; Chichkov, B. N.; Stumpp, N. S.; Stiesch, M. Liquid-infused structured titanium surfaces: Antiadhesive mechanism to repel Streptococcus oralis biofilms. ACS Appl. Mater. Interfaces 2019, 11, 23026–23038.

    CAS  Google Scholar 

  100. Dunlop, J.; Bowlby, M.; Peri, R.; Vasilyev, D.; Arias, R. High-throughput electrophysiology: An emerging paradigm for ion-channel screening and physiology. Nat. Rev. Drug Discov. 2008, 7, 358–368.

    CAS  Google Scholar 

  101. Becchetti, A.; Petroni, G.; Arcangeli, A. Ion channel conformations regulate integrin-dependent signaling. Trends Cell Biol. 2019, 29, 298–307.

    CAS  Google Scholar 

  102. Zaydman, M. A.; Silva, J. R.; Cui, J. M. Ion channel associated diseases: Overview of molecular mechanisms. Chem. Rev. 2012, 112, 6319–6333.

    CAS  Google Scholar 

  103. Chen, C. C.; Cang, C. L.; Fenske, S.; Butz, E.; Chao, Y. K.; Biel, M.; Ren, D. J.; Wahl-Schott, C.; Grimm, C. Patch-clamp technique to characterize ion channels in enlarged individual endolysosomes. Nat. Protoc. 2017, 12, 1639–1658.

    CAS  Google Scholar 

  104. Annecchino, L. A.; Morris, A. R.; Copeland, C. S.; Agabi, O. E.; Chadderton, P.; Schultz, S. R. Robotic automation of in vivo two-photon targeted whole-cell patch-clamp electrophysiology. Neuron 2017, 95, 1048–1055.e3.

    CAS  Google Scholar 

  105. Obergrussberger, A.; Goetze, T. A.; Brinkwirth, N.; Becker, N.; Friis, S.; Rapedius, M.; Haarmann, C.; Rinke-Weiβ, I.; Stölzle-Feix, S.; Brüggemann, A. et al. An update on the advancing high-throughput screening techniques for patch clamp-based ion channel screens: Implications for drug discovery. Expert Opin. Drug Discov. 2018, 13, 269–277.

    CAS  Google Scholar 

  106. Ossola, D.; Amarouch, M. Y.; Behr, P.; Vörös, J.; Abriel, H.; Zambelli, T. Force-controlled patch clamp of beating cardiac cells. Nano Lett. 2015, 15, 1743–1750.

    CAS  Google Scholar 

  107. Saotome, K.; Murthy, S. E.; Kefauver, J. M.; Whitwam, T.; Patapoutian, A.; Ward, A. B. Structure of the mechanically activated ion channel Piezo1. Nature 2018, 554, 481–486.

    CAS  Google Scholar 

  108. Nonomura, K.; Lukacs, V.; Sweet, D. T.; Goddard, L. M.; Kanie, A.; Whitwam, T.; Ranade, S. S.; Fujimori, T.; Kahn, M. L.; Patapoutian, A. Mechanically activated ion channel PIEZO1 is required for lymphatic valve formation. Proc. Natl. Acad. Sci. USA 2018, 115, 12817–12822.

    CAS  Google Scholar 

  109. Cox, C. D.; Bavi, N.; Martinac, B. Biophysical principles of ion-channel-mediated mechanosensory transduction. Cell Rep. 2019, 29, 1–12.

    CAS  Google Scholar 

  110. Li, M.; Dang, D.; Xi, N.; Wang, Y. C.; Liu, L. Q. Nanoscale imaging and force probing of biomolecular systems using atomic force microscopy: From single molecules to living cells. Nanoscale 2017, 9, 17643–17666.

    CAS  Google Scholar 

  111. Müller, D. J.; Dufrêne, Y. F. Force nanoscopy of living cells. Curr. Biol. 2011, 21, R212–R216.

    Google Scholar 

  112. Seifert, J.; Rheinlaender, J.; Novak, P.; Korchev, Y. E.; Schäffer, T. E. Comparison of atomic force microscopy and scanning ion conductance microscopy for live cell imaging. Langmuir 2015, 31, 6807–6813.

    CAS  Google Scholar 

  113. Ando, T. High-speed atomic force microscopy and its future prospects. Biophys. Rev. 2018, 10, 285–292.

    CAS  Google Scholar 

  114. Ossola, D.; Dorwling-Carter, L.; Dermutz, H.; Behr, P.; Vörös, J.; Zambelli, T. Simultaneous scanning ion conductance microscopy and atomic force microscopy with microchanneled cantilevers. Phys. Rev. Lett. 2015, 115, 238103.

    Google Scholar 

  115. Yasui, M.; Hiroshima, M.; Kozuka, J.; Sako, Y.; Ueda, M. Automated single-molecule imaging in living cells. Nat. Commun. 2018, 9, 3061.

    Google Scholar 

  116. Sako, Y.; Minoghchi, S.; Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol. 2000, 2, 168–172.

    CAS  Google Scholar 

  117. Elf, J.; Li, G. W.; Xie, X. S. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 2007, 316, 1191–1194.

    CAS  Google Scholar 

  118. Tokunaga, M.; Imamoto, N.; Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 2008, 5, 159–161.

    CAS  Google Scholar 

  119. Kodera, N.; Yamamoto, D.; Ishikawa, R.; Ando, T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 2010, 468, 72–76.

    CAS  Google Scholar 

  120. Ying, Y. L.; Hu, Y. X.; Gao, R.; Yu, R. J.; Gu, Z.; Lee, L. P.; Long, Y. T. Asymmetric nanopore electrode-based amplification for electron transfer imaging in live cells. J. Am. Chem. Soc. 2018, 140, 5385–5392.

    CAS  Google Scholar 

  121. Li, M.; Xi, N.; Wang, Y. C.; Liu, L. Q. In situ high-resolution AFM imaging and force probing of cell culture medium-forming nanogranular surfaces for cell growth. IEEE Trans. NanoBiosci. 2020, 19, 385–393.

    Google Scholar 

  122. Li, L.; Guo, W.; Yan, Y. Z.; Lee, S.; Wang, T. Label-free superresolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light Sci. Appl. 2013, 2, e104.

    Google Scholar 

  123. Lekka, M.; Pogoda, K.; Gostek, J.; Klymenko, O.; Prauzner-Bechcicki, S.; Wiltowska-Zuber, J.; Jaczewska, J.; Lekki, J.; Stachura, Z. Cancer cell recognition — mechanical phenotype. Micron 2012, 43, 1259–1266.

    Google Scholar 

  124. Li, M.; Xi, N.; Wang, Y. C.; Liu, L. Q. Atomic force microscopy in probing tumor physics for nanomedicine. IEEE Trans. Nanotechnol. 2019, 15, 83–113.

    CAS  Google Scholar 

  125. Tian, Y. M.; Li, J. H.; Cai, M. J.; Zhao, W. D.; Xu, H. J.; Liu, Y.; Wang, H. D. High resolution imaging of mitochondrial membranes by in situ atomic force microscopy. RSC Adv. 2013, 3, 708–712.

    CAS  Google Scholar 

  126. Wang, X.; Liu, H. J.; Zhu, M.; Cao, C. H.; Xu, Z. S.; Tsatskis, Y.; Lau, K.; Kuok, C.; Filleter, T.; McNeill, H. et al. Mechanical stability of the cell nucleus-roles played by the cytoskeleton in nuclear deformation and strain recovery. J. Cell Sci. 2018, 131, jcs209627.

    Google Scholar 

  127. Stewart, J. B.; Chinnery, P. F. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat. Rev. Genet. 2021, 22, 106–118.

    CAS  Google Scholar 

  128. Dan, K.; Veetil, A. T.; Chakraborty, K.; Krishnan, Y. DNA nanodevices map enzymatic activity in organelles. Nat. Nanotechnol. 2019, 14, 252–259.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Scholarship Council (CSC) (No. 202004910157). M. Li is thankful for the support from the National Natural Science Foundation of China (Nos. 61922081 and 61873258), the Key Research Program of Frontier Sciences CAS (No. ZDBS-LY-JSC043), the Youth Innovation Promotion Association CAS (No. 2017243), and the LiaoNing Revitalization Talents Program (No. XLYC1907072).

Funding

Open Access funding provided by Swiss Federal Institute of Technology Zurich

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Li.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, M., Liu, L. & Zambelli, T. FluidFM for single-cell biophysics. Nano Res. 15, 773–786 (2022). https://doi.org/10.1007/s12274-021-3573-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3573-y

Keywords

  • atomic force microscopy
  • fluidic force microscopy
  • single-cell manipulation
  • single-cell force spectroscopy
  • single-cell electrophysiology