Skip to main content
Log in

Highly active bifunctional catalyst: Constructing FeWO4-WO3 heterostructure for water and hydrazine oxidation at large current density

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing high performance anode catalysts for oxygen evolution reaction (OER) and hydrazine oxidation reaction (HzOR) at large current density is an efficient pathway to produce hydrogen. Herein, we synthesize a FeWO4-WO3 heterostructure catalyst growing on nickel foam (FeWO4-WO3/NF) by a combination of hydrothermal and calcination method. It shows good catalytic activity with ultralow potentials for OER (ζ10 = 1.43 V, ζ1.000 = 1.56 V) and HzOR (ζ10 = −0.034 V, ζ1.000 = 0.164 V). Moreover, there is little performance degradation after being tested for 100 h at 1,000 (OER) and 100 (HzOR) mA·cm2, indicating good stability. The superior performance could be attributed to the wolframite structure and heterostructure: The former provides a high electrical conductivity to ensure the electronic transfer capability, and the later induces interfacial electron redistribution to enhance the intrinsic activity and stability. The work offers a brand-new way to prepare good performance catalysts for OER and HzOR, especially at large current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang, C. W.; Zou, P. C.; Nairan, A.; Zhang, Y. Q.; Liu, J. X.; Liu, K. W.; Hu, S. Y.; Kang, F. Y.; Fan, H. J.; Yang, C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95.

    Article  CAS  Google Scholar 

  2. Wu, X. X.; Zhang, T.; Wei, J. X.; Feng, P. F.; Yan, X. B.; Tang, Y. Facile synthesis of Co and Ce dual-doped Ni3S2 nanosheets on Ni foam for enhanced oxygen evolution reaction. Nano Res. 2020, 13, 2130–2135.

    Article  CAS  Google Scholar 

  3. Zheng, T. T.; Shang, C. Y.; He, Z. H.; Wang, X. Y.; Cao, C.; Li, H. L.; Si, R.; Pan, B. C.; Zhou, S. M.; Zeng, J. Intercalated iridium diselenide electrocatalysts for efficient pH-universal water splitting. Angew. Chem., Int. Ed. 2019, 58, 14764–14769.

    Article  CAS  Google Scholar 

  4. Sun, K. A.; Zhao, L.; Zeng, L. Y.; Liu, S. J.; Zhu, H. Y.; Li, Y. P.; Chen, Z.; Zhuang, Z. W.; Li, Z. L.; Liu, Z. et al. Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Res. 2020, 13, 3068–3074.

    Article  CAS  Google Scholar 

  5. Yu, T. Q.; Xu, Q. L.; Qian, G. F.; Chen, J. L.; Zhang, H.; Luo, L.; Yin, S. B. Amorphous CoOx-decorated crystalline RuO2 nanosheets as bifunctional catalysts for boosting overall water splitting at large current density. ACS Sustainable Chem. Eng. 2020, 5, 17520–17526.

    Article  CAS  Google Scholar 

  6. Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748–7759.

    Article  CAS  Google Scholar 

  7. Zhou, L.; Shao, M. F.; Li, J. B.; Jiang, S.; Wei, M.; Duan, X. Two-dimensional ultrathin arrays of CoP: Electronic modulation toward high performance overall water splitting. Nano Energy 2017, 41, 583–590.

    Article  CAS  Google Scholar 

  8. Feng, C.; Faheem, M. B.; Fu, J.; Xiao, Y. Q.; Li, C. L.; Li, Y. B. Fe-based electrocatalysts for oxygen evolution reaction: Progress and perspectives. ACS Catal. 2020, 10, 4019–4047.

    Article  CAS  Google Scholar 

  9. Masud, J.; Umapathi, S.; Ashokaan, N.; Nath, M. Iron phosphide nanoparticles as an efficient electrocatalyst for the OER in alkaline solution. J. Mater. Chem. A 2016, 4, 9750–9754.

    Article  CAS  Google Scholar 

  10. Wei, P. K.; Hao, Z. W.; Yang, Y.; Liu, M. Y.; Zhang, H. J.; Gao, M. R.; Yu, S. H. Unconventional dual-vacancies in nickel diselenidegraphene nanocomposite for high-efficiency oxygen evolution catalysis. Nano Res. 2020, 13, 3292–3298.

    Article  CAS  Google Scholar 

  11. Qian, G. F.; Yu, G. T.; Lu, J. J.; Luo, L.; Wang, T.; Zhang, C. H.; Ku, R. Q.; Yin, S. B.; Chen, W.; Mu, S. C. Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density. J. Mater. Chem. A 2020, 5, 14545–14554.

    Article  Google Scholar 

  12. Li, C. Y.; Liu, M. D.; Ding, H. Y.; He, L. Q.; Wang, E. Z.; Wang, B. L.; Fan, S. S.; Liu, K. A lightly Fe-doped (NiS2/MoS2)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2020, 5, 17527–17536.

    Article  Google Scholar 

  13. Liu, G. Q.; Sun, Z. T.; Zhang, X.; Wang, H. J.; Wang, G. Z.; Wu, X. J.; Zhang, H. M.; Zhao, H. J. Vapor-phase hydrothermal transformation of a nanosheet array structure Ni(OH)2 into ultrathin Ni3S2 nanosheets on nickel foam for high-efficiency overall water splitting. J. Mater. Chem. A 2018, 6, 19201–19209.

    Article  CAS  Google Scholar 

  14. Xu, X. H.; Wang, T.; Dong, L. J.; Lu, W. B.; Miao, X. Y. Energy-efficient hydrogen evolution reactions via hydrazine oxidation over facile synthesis of cobalt tetraoxide electrodes. ACS Sustainable Chem. Eng. 2020, 5, 7973–7980.

    Article  CAS  Google Scholar 

  15. Feng, G.; Kuang, Y.; Li, Y. J.; Sun, X. M. Three-dimensional porous superaerophobic nickel nanoflower electrodes for high-performance hydrazine oxidation. Nano Res. 2015, 5, 3365–3371.

    Article  CAS  Google Scholar 

  16. Zhao, Y.; Jia, N.; Wu, X. R.; Li, F. M.; Chen, P.; Jin, P. J.; Yin, S. W.; Chen, Y. Rhodium phosphide ultrathin nanosheets for hydrazine oxidation boosted electrochemical water splitting. Appl. Catal. B 2020, 270, 118880.

    Article  CAS  Google Scholar 

  17. Zhang, J.; Wang, G.; Liao, Z. Q.; Zhang, P. P.; Wang, F. X.; Zhuang, X. D.; Zschech, E.; Feng, X. L. Iridium nanoparticles anchored on 3D graphite foam as a bifunctional electrocatalyst for excellent overall water splitting in acidic solution. Nano Energy 2017, 40, 27–33.

    Article  CAS  Google Scholar 

  18. Park, J.; Lee, S.; Kim, H. E.; Cho, A.; Kim, S.; Ye, Y.; Han, J. W.; Lee, H.; Jang, J. H.; Lee, J. Investigation of the support effect in atomically dispersed Pt on WO3−x for utilization of Pt in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16038–16042.

    Article  CAS  Google Scholar 

  19. Mamaca, N.; Mayousse, E.; Arrii-Clacens, S.; Napporn, T. W.; Servat, K.; Guillet, N.; Kokoh, K. B. Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction. Appl. Catal. B 2012, 111–112, 376–380.

    Article  CAS  Google Scholar 

  20. Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Ni, B. J. Iridium-based nanomaterials for electrochemical water splitting. Nano Energy 2020, 78, 105270.

    Article  CAS  Google Scholar 

  21. Shen, F.; Wang, Y. M.; Qian, G. F.; Chen, W.; Jiang, W. J.; Luo, L.; Yin, S. B. Bimetallic iron-iridium alloy nanoparticles supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density. Appl. Catal. B 2020, 278, 119327.

    Article  CAS  Google Scholar 

  22. Zheng, D. H.; Jing, Z. X.; Zhao, Q. Y.; Kim, Y.; Li, P.; Xu, H. Z.; Li, Z. F.; Lin, J. J. Efficient Co-doped pyrrhotite Fe0.95S1.05 nanoplates for electrochemical water splitting. Chem. Eng. J. 2020, 402, 125069.

    Article  CAS  Google Scholar 

  23. Wang, Y. M.; Qian, G. F.; Xu, Q. L.; Zhang, H.; Shen, F.; Luo, L.; Yin, S. B. Industrially promising IrNi-FeNi3 hybrid nanosheets for overall water splitting catalysis at large current density. Appl. Catal. B 2021, 286, 119881.

    Article  CAS  Google Scholar 

  24. Liu, T. Y.; Diao, P. Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Res. 2020, 13, 3299–3309.

    Article  CAS  Google Scholar 

  25. Feng, S. Q.; Lu, J. J.; Luo, L.; Qian, G. F.; Chen, J. L.; Abbo, H. S.; Titinchi, S. J. J.; Yin, S. B. Enhancement of oxygen reduction activity and stability via introducing acid-resistant refractory Mo and regulating the near-surface Pt content. J. Energy Chem. 2020, 51, 246–252.

    Article  Google Scholar 

  26. Qiu, M. J.; Sun, P.; Shen, L. X.; Wang, K.; Song, S. Q.; Yu, X.; Tan, S. Z.; Zhao, C. X.; Mai, W. J. WO3 nanoflowers with excellent pseudocapacitive performance and the capacitance contribution analysis. J. Mater. Chem. A 2016, 4, 7266–7273.

    Article  CAS  Google Scholar 

  27. Qian, G. F.; Chen, J. L.; Yu, T. Q.; Luo, L.; Yin, S. B. N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 2021, 13, 77.

    Article  CAS  Google Scholar 

  28. Maslana, K.; Wenelska, K.; Biegun, M.; Mijowska, E. High catalytic performance of tungsten disulphide rodes in oxygen evolution reactions in alkaline solutions. Appl. Catal. B 2020, 266, 118575.

    Article  CAS  Google Scholar 

  29. Babar, P.; Lokhande, A.; Karade, V.; Lee, I. J.; Lee, D.; Pawar, S.; Kim, J. H. Trifunctional layered electrodeposited nickel iron hydroxide electrocatalyst with enhanced performance towards the oxidation of water, urea and hydrazine. J. Colloid Interface Sci. 2019, 557, 10–17.

    Article  CAS  Google Scholar 

  30. Dey, S.; Ricciardo, R. A.; Cuthbert, H. L.; Woodward, P. M. Metal-to-metal charge transfer in AWO4 (A = Mg, Mn, Co, Ni, Cu, or Zn) compounds with the wolframite structure. Inorg. Chem. 2014, 53, 4394–4399.

    Article  CAS  Google Scholar 

  31. Niu, L. Y.; Li, Z. P.; Xu, Y.; Sun, J. F.; Hong, W.; Liu, X. H.; Wang, J. Q.; Yang, S. R. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 8044–8052.

    Article  CAS  Google Scholar 

  32. Shao, W.; Xia, Y. H.; Luo, X.; Bai, L. F.; Zhang, J.; Sun, G. A.; Xie, C. M.; Zhang, X. D.; Yan, W. S.; Xie, Y. Structurally distorted wolframite-type CoxFe1−xWO4 solid solution for enhanced oxygen evolution reaction. Nano Energy 2018, 50, 717–722.

    Article  CAS  Google Scholar 

  33. Yan, M. L.; Mao, K.; Cui, P. X.; Chen, C.; Zhao, J.; Wang, X. Z.; Yang, L. J.; Yang, H.; Wu, Q.; Hu, Z. In situ construction of porous hierarchical (Ni3−xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 328–334.

    Article  CAS  Google Scholar 

  34. Zhang, H. J.; Maijenburg, A. W.; Li, X. P.; Schweizer, S. L.; Wehrspohn, R. B. Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Adv. Funct. Mater. 2020, 30, 2003261.

    Article  CAS  Google Scholar 

  35. Liang, Z. B.; Zhou, W. Y.; Gao, S.; Zhao, R.; Zhang, H.; Tang, Y. Q.; Cheng, J. Q.; Qiu, T. J.; Zhu, B. J.; Qu, C. et al. Fabrication of hollow CoP/TiOx heterostructures for enhanced oxygen evolution reaction. Small 2020, 16, 1905075.

    Article  CAS  Google Scholar 

  36. Yan, H. J.; Xie, Y.; Wu, A. P.; Cai, Z. C.; Wang, L.; Tian, C. G.; Zhang, X. M.; Fu, H. G. Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 2019, 31, 1901174.

    Article  CAS  Google Scholar 

  37. Liu, G.; Wang, M. H.; Wu, Y.; Li, N.; Zhao, F.; Zhao, Q.; Li, J. P. 3D porous network heterostructure NiCe@NiFe electrocatalyst for efficient oxygen evolution reaction at large current densities. Appl. Catal. B 2020, 260, 118199.

    Article  CAS  Google Scholar 

  38. Sun, Q. Q.; Zhou, M.; Shen, Y. Q.; Wang, L. Y.; Ma, Y.; Li, Y. B.; Bo, X.; Wang, Z. L.; Zhao, C. Hierarchical nanoporous Ni(Cu) alloy anchored on amorphous NiFeP as efficient bifunctional electrocatalysts for hydrogen evolution and hydrazine oxidation. J. Catal. 2019, 373, 180–189.

    Article  CAS  Google Scholar 

  39. Wang, M. J.; Zheng, X. Q.; Song, L. L.; Feng, X.; Liao, Q.; Li, J.; Li, L.; Wei, Z. D. Fe3O4/FeS2 heterostructures enable efficient oxygen evolution reaction. J. Mater. Chem. A 2020, 8, 14145–14151.

    Article  CAS  Google Scholar 

  40. Chen, Z. J.; Zhong, H. F.; Hu, W. J.; Yin, H.; Cao, G. X.; Wen, H.; Wang, J. J.; Wang, P. Highly dispersed Ni2−xMoxP nanoparticles on oxygen-defect-rich NiMoO4−y nanosheets as an active electrocatalyst for alkaline hydrogen evolution reaction. J. Power Sources 2019, 444, 227311.

    Article  CAS  Google Scholar 

  41. Wang, H. X.; Wang, C. H.; Cui, X. M.; Qin, L.; Ding, R. M.; Wang, L. C.; Liu, Z.; Zheng, Z. F.; Lv, B. L. Design and facile one-step synthesis of FeWO4/Fe2O3 di-modified WO3 with super high photocatalytic activity toward degradation of quasi-phenothiazine dyes. Appl. Catal. B 2018, 221, 169–178.

    Article  CAS  Google Scholar 

  42. Feng, H. P.; Tang, L.; Zeng, G. M.; Yu, J. F.; Deng, Y. C.; Zhou, Y. Y.; Wang, J. J.; Feng, C. Y.; Luo, T.; Shao, B. B. Electron density modulation of Fe1−xCoxP nanosheet arrays by iron incorporation for highly efficient water splitting. Nano Energy 2020, 67, 104174.

    Article  CAS  Google Scholar 

  43. Chen, Y. X.; Shen, L.; Wang, C. C.; Feng, S. Y.; Zhang, N.; Xiang, S. Y.; Feng, T. L.; Yang, M. X.; Zhang, K.; Yang, B. Utilizing in-situ polymerization of pyrrole to fabricate composited hollow nanospindles for boosting oxygen evolution reaction. Appl. Catal. B 2020, 274, 119112.

    Article  CAS  Google Scholar 

  44. Li, X.; Kou, Z. K.; Xi, S. B.; Zang, W. J.; Yang, T.; Zhang, L.; Wang, J. Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. Nano Energy 2020, 78, 105230.

    Article  CAS  Google Scholar 

  45. Liu, H. B.; Yang, L.; Qiao, K. W.; Zeng, X. F.; Huang, Y.; Zheng, L. R.; Cao, D. P. A new concept analogous to homogeneous catalysis to construct in-situ regenerative electrodes for long-term oxygen evolution reaction. Nano Energy 2020, 76, 105115.

    Article  CAS  Google Scholar 

  46. Ouyang, T.; Wang, X. T.; Mai, X. Q.; Chen, A. N.; Tang, Z. Y.; Liu, Z. Q. Coupling magnetic single-crystal Co2Mo3O8 with ultrathin nitrogen-rich carbon layer for oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 11948–11957.

    Article  CAS  Google Scholar 

  47. Tsai, F. T.; Deng, Y. T.; Pao, C. W.; Chen, J. L.; Lee, J. F.; Lai, K. T.; Liaw, W. F. The HER/OER mechanistic study of an FeCoNi-based electrocatalyst for alkaline water splitting. J. Mater. Chem. A 2020, 8, 9939–9950.

    Article  CAS  Google Scholar 

  48. Wang, Z. L.; Liu, W. J.; Hu, Y. M.; Guan, M. L.; Xu, L.; Li, H. P.; Bao, J.; Li, H. M. Cr-doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl. Catal. B 2020, 272, 118959.

    Article  CAS  Google Scholar 

  49. Wang, Z. Y.; Xu, L.; Huang, F. Z.; Qu, L. B.; Li, J. T.; Owusu, K. A.; Liu, Z. A.; Lin, Z. F.; Xiang, B. H.; Liu, X. et al. Copper-Nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine-assisted electrolytic hydrogen production. Adv. Energy Mater. 2019, 9, 1900390.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 21872040), the Hundred Talents Program of Guangxi Universities, the Excellent Scholars and Innovation Team of Guangxi Universities, Guangxi Major Projects of Science and Technology (No. GXMPSTAA17202032), Guangxi Ba-Gui Scholars Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibin Yin.

Electronic Supplementary Material

12274_2021_3548_MOESM1_ESM.pdf

Highly active bifunctional catalyst: Constructing FeWO4-WO3 heterostructure for water and hydrazine oxidation at large current density

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, F., Wang, Z., Wang, Y. et al. Highly active bifunctional catalyst: Constructing FeWO4-WO3 heterostructure for water and hydrazine oxidation at large current density. Nano Res. 14, 4356–4361 (2021). https://doi.org/10.1007/s12274-021-3548-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3548-z

Keywords

Navigation