Skip to main content
Log in

Programmed albumin nanoparticles regulate immunosuppressive pivot to potentiate checkpoint blockade cancer immunotherapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The therapeutic efficacy of programmed cell death protein 1/programmed cell death-ligand 1 (PD-1/PD-L1) blockade immunotherapy is extremely dampened by complex immunosuppressive mechanisms including regulatory T cells (Treg), M2 macrophages (M2), and prostaglandin E2 (PGE2). The pivotal roles of PGE2 have been recognized by directly inactivating CD8+ T cells and indirectly inducing Treg and M2. Therefore, PGE2 abolishment through inactivating cyclooxygenase-2 (COX-2) could be robust to sensitize tumour toward anti-PD-1/PD-L1 immunotherapy, which has gone into clinical trials. However, exploring this promising strategy in nanomedicine to enhance immunotherapy remains unrevealed. The key challenge to synergistically combine COX-2 inhibition and anti-PD-1/PD-L1 lies in the different pharmacokinetic profiles and the spatial obstacles since PD-1/PD-L1 interaction occurs extracellularly and COX-2 locates intracellularly. Thus, the programmed release nanoparticles (termed as Cele-BMS-NPs) are rationally designed, which are composed of pH-sensitive human serum albumin derivative, BMS-202 compound as PD-1/PD-L1 inhibitor, glutathione (GSH)-activatable prodrug of celecoxib (COX-2 inhibitor). The in vitro experiments demonstrate that this smart Cele-BMS-NPs could extracellularly release BMS-202 under the acidic tumour microenvironment, and the intracellularly release of celecoxib in response to the elevated GSH concentration inside tumour cells. After systemic administration, the intratumoral infiltration of CD8+ T cells is significantly enhanced and meanwhile immunosuppressive M2, Treg, and PGE2 are reduced, thereby eliciting the anti-tumour immune responses toward low immunogenic tumours and postsurgical tumour recurrences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Couzin-Frankel, J. Cancer immunotherapy. Science 2013, 342, 1432–1433.

    Article  CAS  Google Scholar 

  2. Robert, C.; Schachter, J.; Long, G. V.; Arance, A.; Grob, J. J.; Mortier, L.; Daud, A.; Carlino, M. S.; McNeil, C.; Lotem, M. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 2015, 372, 2521–2532.

    Article  CAS  Google Scholar 

  3. Sharma, P.; Allison, J. P. The future of immune checkpoint therapy. Science 2015, 348, 56–61.

    Article  CAS  Google Scholar 

  4. Weber, J. S.; D’Angelo, S. P.; Minor, D.; Hodi, F. S.; Gutzmer, R.; Neyns, B.; Hoeller, C.; Khushalani, N. I.; Miller, W. H. Jr.; Lao, C. D. et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015, 16, 375–384.

    Article  CAS  Google Scholar 

  5. Brahmer, J. R.; Tykodi, S. S.; Chow, L. Q. M; Hwu, W. J.; Topalian, S. L.; Hwu, P.; Drake, C. G.; Camacho, L. H.; Kauh, J.; Odunsi, K. et al. Safety and activity of anti-PD-Ll antibody in patients with advanced cancer. N. Engl. J. Med. 2012, 366, 2455–2465.

    Article  CAS  Google Scholar 

  6. Kim, K.; Skora, A. D.; Li, Z. B.; Liu, Q.; Tam, A. J.; Blosser, R. L.; Diaz, L. A. Jr.; Papadopoulos, N.; Kinzler, K. W.; Vogelstein, B. et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc. Natl. Acad. Sci. USA 2014, 111, 11774–11779.

    Article  CAS  Google Scholar 

  7. Postow, M. A.; Sidlow, R.; Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 2018, 378, 158–168.

    Article  CAS  Google Scholar 

  8. Lybaert, L.; Vermaelen, K.; De Geest, B. G.; Nuhn, L. Immunoengineering through cancer vaccines—a personalized and multi-step vaccine approach towards precise cancer immunity. J. Control. Release 2018, 289, 125–145.

    Article  CAS  Google Scholar 

  9. Nuhn, L.; De Koker, S.; Van Lint, S.; Zhong, Z. F.; Catani, J. P.; Combes, F.; Deswarte, K.; Li, Y. P.; Lambrecht, B. N.; Lienenklaus, S. et al. Nanoparticle-conjugate TLR7/8 agonist localized immunotherapy provokes safe antitumoral responses. Adv. Mater. 2018, 45, 1803397.

    Article  Google Scholar 

  10. Butt, A. Q.; Mills, K. H. G. Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines. Oncogene 2014, 33, 4623–4631.

    Article  CAS  Google Scholar 

  11. Adams, J. L.; Smothers, J.; Srinivasan, R.; Hoos, A. Big opportunities for small molecules in immuno-oncology. Nat. Rev. Drug Discov. 2015, 14, 603–622.

    Article  CAS  Google Scholar 

  12. Kryczek, I.; Wei, S.; Zou, L. H.; Zhu, G. F.; Mottram, P.; Xu, H. B.; Chen, L. P.; Zou, W. P. Cutting edge: Induction of B7-H4 on APCs through IL-10: Novel suppressive mode for regulatory T cells. J. Immunol. 2006, 177, 40–44.

    Article  CAS  Google Scholar 

  13. Nakanishi, Y.; Nakatsuji, M.; Seno, H.; Ishizu, S.; Akitake-Kawano, R.; Kanda, K.; Ueo, T.; Komekado, H.; Kawada, M.; Minami, M. et al. COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis 2011, 32, 1333–1339.

    Article  CAS  Google Scholar 

  14. Ruffell, B.; Affara, N. I.; Coussens, L. M. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012, 33, 119–126.

    Article  CAS  Google Scholar 

  15. Noy, R.; Pollard, J. W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014, 41, 49–61.

    Article  CAS  Google Scholar 

  16. Mahic, M.; Yaqub, S.; Johansson, C. C.; Taskén, K.; Aandahl, E. M. FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J. Immunol. 2006, 177, 246–254.

    Article  CAS  Google Scholar 

  17. Wang, S. J.; Khullar, K.; Yegya-Raman, N.; Kim, S.; Silk, A. W.; Malhotra, J.; Gentile, M. A.; Mehnert, J. M.; Jabbour, S. K. Cyclooxygenase inhibitor use during checkpoint blockade immunotherapy and effect on time to progression for metastatic melanoma patients. J. Clin. Oncol. 2019, 37, e21029.

    Article  Google Scholar 

  18. Wang, S. J.; Khullar, K.; Kim, S.; Yegya-Raman, N.; Malhotra, J.; Groisberg, R.; Crayton, S. H.; Silk, A. W.; Nosher, J. L.; Gentile, M. A. et al. Effect of cyclo-oxygenase inhibitor use during checkpoint blockade immunotherapy in patients with metastatic melanoma and non-small cell lung cancer. J. ImmunoTher. Cancer 2020, 8, e000889.

    Article  Google Scholar 

  19. Yang, J. X.; Wang, C. H.; Shi, S.; Dong, C. Y. Nanotechnologies for enhancing cancer immunotherapy. Nano Res. 2020, 13, 2595–2616.

    Article  CAS  Google Scholar 

  20. Li, Z. L.; Hu, Y.; Miao, Z. H.; Xu, H.; Li, C. X.; Zhao, Y.; Li, Z.; Chang, M. L.; Ma, Z.; Sun, Y. et al. Dual-stimuli responsive bismuth nanoraspberries for multimodal imaging and combined cancer therapy. Nano Lett. 2018, 18, 6778–6788.

    Article  CAS  Google Scholar 

  21. Rajendrakumar, S. K.; Cherukula, K.; Park, H. J.; Uthaman, S.; Jeong, Y. Y.; Lee, B. I.; Park, I. K. Dual-stimuli-responsive albumin-polyplex nanoassembly for spatially controlled gene release in metastatic breast cancer. J. Control. Release 2018, 276, 72–83.

    Article  CAS  Google Scholar 

  22. Qu, Y.; Chu, B. Y.; Wei, X. W.; Lei, M. Y.; Hu, D. R.; Zha, R. Y.; Zhong, L.; Wang, M. Y.; Wang, F. F.; Qian, Z. Y. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for “on-demand” drug delivery. J. Control. Release 2019, 296, 93–106.

    Article  CAS  Google Scholar 

  23. Zhang, X. L.; Zhang, C. N.; Cheng, M. B.; Zhang, Y. H.; Wang, W.; Yuan, Z. Dual pH-responsive “charge-reversal like” gold nanoparticles to enhance tumor retention for chemo-radiotherapy. Nano Res. 2019, 12, 2815–2856.

    Article  CAS  Google Scholar 

  24. Zhang, Z. Z.; Wang, Q. X.; Liu, Q.; Zheng, Y. D.; Zheng, C. X.; Yi, K. K.; Zhao, Y.; Gu, Y.; Wang, Y.; Wang, C. et al. Dual-locking nanoparticles disrupt the PD-1/PD-L1 pathway for efficient cancer immunotherapy. Adv. Mater. 2019, 31, 1905751.

    Article  CAS  Google Scholar 

  25. Liu, J. Y.; Liu, W. G.; Weitzhandler, I.; Bhattacharyya, J.; Li, X. H.; Wang, J.; Qi, Y. Z.; Bhattacharjee, S.; Chilkoti, A. Ring-opening polymerization of prodrugs: A versatile approach to prepare well-defined drug-loaded nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 1002–1006.

    Article  CAS  Google Scholar 

  26. Noh, J.; Kwon, B.; Han, E.; Park, M.; Yang, W.; Cho, W.; Yoo, W.; Khang, G.; Lee, D. Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death. Nat. Commun. 2015, 6, 6907.

    Article  CAS  Google Scholar 

  27. Feng, L. D.; Wang, Y. Q.; Luo, Z. L.; Huang, Z.; Zhang, Y.; Guo, K.; Ye, D. J. Dual stimuli-responsive nanoparticles for controlled release of anticancer and anti-inflammatory drugs combination. Chem.-Eur. J. 2017, 23, 9397–9406.

    Article  CAS  Google Scholar 

  28. Palanikumar, L.; Jeena, M. T.; Kim, K.; Oh, J. Y.; Kim, C.; Park, M. H.; Ryu, J. H. Spatiotemporally and sequentially-controlled drug release from polymer gatekeeper-hollow silica nanoparticles. Sci. Rep. 2017, 7, 46540.

    Article  CAS  Google Scholar 

  29. Sun, Z. Q.; Liu, G. H.; Hu, J. M.; Liu, S. Y. Photo- and reduction-responsive polymersomes for programmed release of small and macromolecular payloads. Biomacromolecules 2018, 19, 2071–2081.

    Article  CAS  Google Scholar 

  30. Webb, B. A.; Chimenti, M.; Jacobson, M. P.; Barber, D. L. Dysregulated pH: A perfect storm for cancer progression. Nat. Rev. Cancer 2011, 11, 671–677.

    Article  CAS  Google Scholar 

  31. Eisele, K.; Gropeanu, R. A.; Zehendner, C. M.; Rouhanipour, A.; Ramanathan, A.; Mihov, G.; Koynov, K.; Kuhlmann, C. R. W.; Vasudevan, S. G.; Luhmann, H. J. et al. Fine-tuning DNA/albumin polyelectrolyte interactions to produce the efficient transfection agent cBSA-147. Biomaterials 2010, 31, 8789–8801.

    Article  CAS  Google Scholar 

  32. Wu, Y. Z.; Pramanik, G.; Eisele, K.; Weil, T. Convenient approach to polypeptide copolymers derived from native proteins. Biomacromolecules 2012, 13, 1890–1898.

    Article  CAS  Google Scholar 

  33. Wu, Y. Z.; Ihme, S.; Feuring-Buske, M.; Kuan, S. L.; Eisele, K.; Lamla, M.; Wang, Y. R.; Buske, C.; Weil, T. A core-shell albumin copolymer nanotransporter for high capacity loading and two-step release of doxorubicin with enhanced anti-leukemia activity. Adv. Healthc. Mater. 2013, 2, 884–894.

    Article  CAS  Google Scholar 

  34. Meier, C.; Wu, Y. Z.; Pramanik, G.; Weil, T. Self-assembly of high molecular weight polypeptide copolymers studied via diffusion limited aggregation. Biomacromolecules 2014, 15, 219–227.

    Article  CAS  Google Scholar 

  35. Wu, Y. Z.; Ermakova, A.; Liu, W. N.; Pramanik, G.; Vu, T. M.; Kurz, A.; McGuinness, L.; Naydenov, B.; Hafner, S.; Reuter, R. et al. Programmable biopolymers for advancing biomedical applications of fluorescent nanodiamonds. Adv. Funct. Mater. 2015, 25, 6576–6585.

    Article  CAS  Google Scholar 

  36. Alouane, A.; Labruère, R.; Le Saux, T.; Schmidt, F.; Jullien, L. Self-immolative spacers: Kinetic aspects, structure-property relationships, and applications. Angew. Chem., Int. Ed. 2015, 54, 7492–7509.

    Article  CAS  Google Scholar 

  37. Roth, M. E.; Green, O.; Gnaim, S.; Shabat, D. Dendritic, oligomeric, and polymeric self-immolative molecular amplification. Chem. Rev. 2016, 116, 1309–1352.

    Article  CAS  Google Scholar 

  38. Boussif, O.; Zanta, M. A.; Behr, J. P. Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Ther. 1996, 3, 1074–1080.

    CAS  Google Scholar 

  39. Akinc, A.; Thomas, M.; Klibanov, A. M.; Langer, R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 2005, 7, 657–663.

    Article  CAS  Google Scholar 

  40. Jiang, Y. Y.; Lu, H. X.; Dag, A.; Hart-Smith, G.; Stenzel, M. H. Albumin-polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: Comparison between PMMA and PCL. J. Mater. Chem B 2016, 4, 2017–2027.

    Article  CAS  Google Scholar 

  41. Jiang, Y. Y.; Wong, S.; Chen, F.; Chang, T.; Lu, H. X.; Stenzel, M. H. Influencing selectivity to cancer cells with mixed nanoparticles prepared from albumin-polymer conjugates and block copolymers. Bioconjug. Chem. 2017, 28, 979–985.

    Article  CAS  Google Scholar 

  42. Taguchi, K.; Lu, H. X.; Jiang, Y. Y.; Hung, T. T.; Stenzel, M. H. Safety of nanoparticles based on albumin-polymer conjugates as a carrier of nucleotides for pancreatic cancer therapy. J. Mater. Chem. B 2018, 6, 6278–6287.

    Article  CAS  Google Scholar 

  43. Piloni, A.; Wong, C. K.; Chen, F.; Lord, M.; Walther, A.; Stenzel, M. H. Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake. Nanoscale 2019, 11, 23259–23267.

    Article  CAS  Google Scholar 

  44. Ko, J. Y.; Park, S.; Lee, H.; Koo, H.; Kim, M. S.; Choi, K.; Kwon, I. C.; Jeong, S. Y.; Kim, K.; Lee, D. S. pH-sensitive nanoflash for tumoral acidic pH imaging in live animals. Small 2010, 6, 2539–2544.

    Article  CAS  Google Scholar 

  45. Zhou, K. J.; Wang, Y. G.; Huang, X. N.; Luby-Phelps, K.; Sumer, B. D.; Gao, J. M. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem., Int. Ed. 2011, 50, 6109–6114.

    Article  CAS  Google Scholar 

  46. Zhou, K. J.; Liu, H. M.; Zhang, S. R.; Huang, X. N.; Wang, Y. G.; Huang, G.; Sumer, B. D.; Gao, J. M. Multicolored pH-tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli. J. Am. Chem. Soc. 2012, 134, 7803–7811.

    Article  CAS  Google Scholar 

  47. Wang, Y. G.; Zhou, K. J.; Huang, G.; Hensley, C.; Huang, X. N.; Ma, X. P.; Zhao, T.; Sumer, B. D.; DeBerardinis, R. J.; Gao, J. M. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat. Mater. 2014, 13, 204–212.

    Article  CAS  Google Scholar 

  48. Guzik, K.; Zak, K. M.; Grudnik, P.; Magiera, K.; Musielak, B.; Törner, R.; Skalniak, L.; Dömling, A.; Dubin, G.; Holak, T. A. Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced protein states and dimerization of PD-L1. J. Med. Chem. 2017, 60, 5857–5867.

    Article  CAS  Google Scholar 

  49. Skalniak, L.; Zak, K. M.; Guzik, K.; Magiera, K.; Musielak, B.; Pachota, M.; Szelazek, B.; Kocik, J.; Grudnik, P.; Tomala, M. et al. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget 2017, 8, 72167–72181.

    Article  Google Scholar 

  50. Konstantinidou, M.; Zarganes-Tzitzikas, T.; Magiera-Mularz, K.; Holak, T. A.; Dömling, A. Immune checkpoint PD-1/PD-L1: Is there life beyond antibodies? Angew. Chem., Int. Ed. 2018, 57, 4840–4848.

    Article  CAS  Google Scholar 

  51. Wang, C.; Sun, W. J.; Wright, G.; Wang, A. Z.; Gu, Z. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Adv. Mater. 2016, 28, 8912–8920.

    Article  CAS  Google Scholar 

  52. Wang, C.; Sun, W. J.; Ye, Y. Q.; Hu, Q. Y.; Bomba, H. N.; Gu, Z. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 2017, 1, 0011.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from The National Key R&D Program of China (No. 2018YFA0903500), The Postdoctoral Science Fund of China (No. 2017M622429), The National Natural Science Foundation of China (No. 51703073), and The 1000 Young Talent Program of China. We also thank the Analytical and Testing Centre of HUST, Analytical and Testing Centre of School of Chemistry and Chemical Engineering (HUST), and Research Core Facilities for Life Sciences (HUST) for instrument support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhou Wu.

Electronic Supplementary Material

12274_2021_3525_MOESM1_ESM.pdf

Programmed albumin nanoparticles regulate immunosuppressive pivot to potentiate checkpoint blockade cancer immunotherapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Yang, L., Li, L. et al. Programmed albumin nanoparticles regulate immunosuppressive pivot to potentiate checkpoint blockade cancer immunotherapy. Nano Res. 15, 593–602 (2022). https://doi.org/10.1007/s12274-021-3525-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3525-6

Keywords

Navigation