Skip to main content
Log in

Reversible and controllable threshold voltage modulation for n-channel MoS2 and p-channel MoTe2 field-effect transistors via multiple counter doping with ODTS/poly-L-lysine charge enhancers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Confronted by the inherent physical limitations in scaling down Si technology, transition metal dichalcogenides (TMDCs) as alternatives are being tremendously researched and paid attention to. However, mature counter doping technology for TMDCs is still elusive, and thus, a controllable and reversible charge enhancer is adopted for acceptor (or donor)-like doping via octadecyltrichlorosilane (ODTS) (or poly-L-lysine (PLL)) treatment. Furthermore, multiple counter doping for TMDC field-effect transistors (FETs), combined with a threshold voltage (Vth) freezing scheme, renders the Vth modulation controllable, with negligible degradation and decent sustainability of FETs even after each treatment of a representative charge enhancer. In parallel, the counter doping mechanism is systematically investigated via photoluminescence spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy (AFM), surface energy characterization, and measurement of optoelectronic properties under illumination with light of various wavelengths. More impressively, complementary inverters, composed of type-converted molybdenum ditelluride (MoTe2) FETs and hetero-TMDC FETs in enhancement mode, are demonstrated via respective ODTS/PLL treatments. Herein, driving backplane application for micro-light-emitting diode (µ-LED) displays and physical validation of a corresponding counter doping scheme even for flexible polyethylene terephthalate (PET) substrates could be leveraged to relieve daunting challenges in the application of nanoscale Si-based three-dimensional (3D) stacked systems, with potential adoption of ultralow power and monolithic optical interconnection technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

    CAS  Google Scholar 

  2. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  3. Venkata Subbaiah, Y. P.; Saji, K. J.; Tiwari, A. Atomically thin MoS2: A versatile nongraphene 2D material. Adv. Funct. Mater. 2016, 26, 2046–2069.

    Article  CAS  Google Scholar 

  4. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  CAS  Google Scholar 

  5. Smithe, K. K. H.; English, C. D.; Suryavanshi, S. V.; Pop, E. High-field transport and velocity saturation in synthetic monolayer MoS2. Nano Lett. 2018, 18, 4516–4522.

    Article  CAS  Google Scholar 

  6. Pherson, M. R. M. The adjustment of mos transistor threshold voltage by ion implantation. Appl. Phys. Lett. 1971, 18, 502–504.

    Article  Google Scholar 

  7. Park, Y. J.; Katiyar, A. K.; Hoang, A. T.; Ahn, J. H. Controllable p- and n-type conversion of MoTe2 via oxide interfacial layer for logic circuits. Small 2019, 15, 1901772.

    Article  CAS  Google Scholar 

  8. Cho, Y.; Park, J. H.; Kim, M.; Jeong, Y.; Yu, S.; Lim, J. Y.; Yi, Y.; Im, S. Impact of organic molecule-induced charge transfer on operating voltage control of both n-MoS2 and p-MoTe2 transistors. Nano Lett. 2019, 19, 2456–2463.

    Article  CAS  Google Scholar 

  9. Roh, J.; Ryu, J. H.; Baek, G. W.; Jung, H.; Seo, S. G.; An, K.; Jeong, B. G.; Lee, D. C.; Hong, B. H.; Bae, W. K. et al. Threshold voltage control of multilayered MoS2 field-effect transistors via octadecyltrichlorosilane and their applications to active matrixed quantum dot displays driven by enhancement-mode logic Gates. Small 2019, 15, 1803852.

    Article  CAS  Google Scholar 

  10. Park, J.; Kang, D. H.; Kim, J. K.; Park, J. H.; Yu, H. Y. Efficient threshold voltage adjustment technique by dielectric capping effect on MoS2 field-effect transistor. IEEE Electron Device Lett. 2017, 38, 1172–1175.

    Article  CAS  Google Scholar 

  11. Li, X. K.; Sun, R. X.; Guo, H. W.; Su, B. W.; Li, D. K.; Yan, X. Q.; Liu, Z. B.; Tian, J. G. Controllable doping of transition-metal dichalcogenides by organic solvents. Adv. Electron. Mater. 2020, 6, 1901230.

    Article  CAS  Google Scholar 

  12. Kawanago, T.; Oda, S. Control of threshold voltage by gate metal electrode in molybdenum disulfide field-effect transistors. Appl. Phys. Lett. 2017, 110, 133507.

    Article  CAS  Google Scholar 

  13. Jiang, J.; Dhar, S. Tuning the threshold voltage from depletion to enhancement mode in a multilayer MoS2 transistor via oxygen adsorption and desorption. Phys. Chem. Chem. Phys. 2016, 18, 685–689.

    Article  CAS  Google Scholar 

  14. Leong, W. S.; Li, Y. D.; Luo, X.; Nai, C. T.; Quek, S. Y.; Thong, J. T. L. Tuning the threshold voltage of MoS2 field-effect transistors via surface treatment. Nanoscale 2015, 7, 10823–10831.

    Article  CAS  Google Scholar 

  15. Nakaharai, S.; Yamamoto, M.; Ueno, K.; Lin, Y. F.; Li, S. L.; Tsukagoshi, K. Electrostatically reversible polarity of ambipolar α-MoTe2 transistors. ACS Nano 2015, 9, 5976–5983.

    Article  CAS  Google Scholar 

  16. Najmaei, S.; Zou, X. L.; Er, D. Q.; Li, J. W.; Jin, Z. H.; Gao, W. L.; Zhang, Q.; Park, S.; Ge, L. H.; Lei, S. D. et al. Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry. Nano Lett. 2014, 14, 1354–1361.

    Article  CAS  Google Scholar 

  17. Li, Y.; Xu, C. Y.; Hu, P. A.; Zhen, L. Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 2013, 7, 7795–7804.

    Article  CAS  Google Scholar 

  18. Kang, D. H.; Jeon, M. H.; Jang, S. K.; Choi, W. Y.; Kim, K. N.; Kim, J.; Lee, S.; Yeom, G. Y.; Park, J. H. Self-assembled layer (SAL)-based doping on black phosphorus (BP) transistor and photodetector. ACS Photonics 2017, 4, 1822–1830.

    Article  CAS  Google Scholar 

  19. Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219–4227.

    Article  CAS  Google Scholar 

  20. Kang, D. H.; Shim, J.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Yeom, G. Y.; Jung, W. S.; Jang, Y. H.; Lee, S.; Park, J. H. Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. ACS Nano 2015, 9, 1099–1107.

    Article  CAS  Google Scholar 

  21. Ji, H. G.; Solís-Fernández, P.; Yoshimura, D.; Maruyama, M.; Endo, T.; Miyata, Y.; Okada, S.; Ago, H. Chemically tuned p- and n-type WSe2 monolayers with high carrier mobility for advanced electronics. Adv. Mater. 2019, 31, 1903613.

    Article  CAS  Google Scholar 

  22. Shan, C. S.; Yang, H. F.; Han, D. X.; Zhang, Q. X.; Ivaska, A.; Niu, L. Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir 2009, 25, 12030–12033.

    Article  CAS  Google Scholar 

  23. Basu, A. K.; Sah, A. N.; Pradhan, A.; Bhattacharya, S. Poly-L-lysine functionalised MWCNT-rGO nanosheets based 3D hybrid structure for femtomolar level cholesterol detection using cantilever based sensing platform. Sci. Rep. 2019, 9, 3686.

    Article  CAS  Google Scholar 

  24. Zhang, Y. J.; Li, J.; Shen, Y. F.; Wang, M. J.; Li, J. H. Poly-L-lysine functionalization of single-walled carbon nanotubes. J. Phys. Chem. B 2004, 108, 15343–15346.

    Article  CAS  Google Scholar 

  25. Mei, J. C.; Li, Y. T.; Zhang, H.; Xiao, M. M.; Ning, Y.; Zhang, Z. Y.; Zhang, G. J. Molybdenum disulfide field-effect transistor biosensor for ultrasensitive detection of DNA by employing morpholino as probe. Biosens. Bioelectron. 2018, 110, 71–77.

    Article  CAS  Google Scholar 

  26. Meroni, D.; Lo Presti, L.; Di Liberto, G.; Ceotto, M.; Acres, R. G.; Prince, K. C.; Bellani, R.; Soliveri, G.; Ardizzone, S. A close look at the structure of the TiO2-APTES interface in hybrid nanomaterials and its degradation pathway: An experimental and theoretical study. J. Phys. Chem. C 2017, 121, 430–440.

    Article  CAS  Google Scholar 

  27. Wang, Y. K.; Krasnopeeva, E.; Lin, S. Y.; Bai, F.; Pilizota, T.; Lo, C. J. Comparison of Escherichia coli surface attachment methods for single-cell microscopy. Sci. Rep. 2019, 9, 19418.

    Article  CAS  Google Scholar 

  28. Louise Meyer, R.; Zhou, X. F.; Tang, L.; Arpanaei, A.; Kingshott, P.; Besenbacher, F. Immobilisation of living bacteria for AFM imaging under physiological conditions. Ultramicroscopy 2010, 110, 1349–1357.

    Article  CAS  Google Scholar 

  29. Cho, K.; Park, W.; Park, J.; Jeong, H.; Jang, J.; Kim, T. Y.; Hong, W. K.; Hong, S.; Lee, T. Electric stress-induced threshold voltage instability of multilayer MoS2 field effect transistors. ACS Nano 2013, 7, 7751–7758.

    Article  CAS  Google Scholar 

  30. Seo, S. G.; Jeong, J.; Jin, S. H. Influence of air atmosphere on electrical characteristics of p-type MoTe2 FETs under DC and pulsed mode operation. Microelectron. Reliab. 2020, 111, 113680.

    Article  CAS  Google Scholar 

  31. Roh, J.; Cho, I. T.; Shin, H.; Woo Baek, G.; Hee Hong, B.; Lee, J. H.; Hun Jin, S.; Lee, C. Fluorinated CYTOP passivation effects on the electrical reliability of multilayer MoS2 field-effect transistors. Nanotechnology 2015, 26, 455201.

    Article  CAS  Google Scholar 

  32. Seo, S. G.; Hong, J. H.; Ryu, J. H.; Jin, S. H. Low-frequency noise characteristics in multilayer MoTe2 FETs with hydrophobic amorphous fluoropolymers. IEEE Electron Device Lett. 2019, 40, 251–254.

    Article  CAS  Google Scholar 

  33. Seo, S. G.; Joeng, J.; Kim, K.; Kim, K.; Jin, S. H. Bias stress instability in multilayered MoS2 field-effect transistors under pulse-mode operation. IEEE Trans. Electron Devices 2020, 67, 1864–1872.

    Article  CAS  Google Scholar 

  34. Jeon, P. J.; Min, S. W.; Kim, J. S.; Raza, S. R. A.; Choi, K.; Lee, H. S.; Lee, Y. T.; Hwang, D. K.; Choi, H. J.; Im, S. Enhanced device performances of WSe2-MoS2 van der Waals junction p-n diode by fluoropolymer encapsulation. J. Mater. Chem. C 2015, 3, 2751–2758.

    Article  CAS  Google Scholar 

  35. Tarasov, A.; Zhang, S. Y.; Tsai, M. Y.; Campbell, P. M.; Graham, S.; Barlow, S.; Marder, S. R.; Vogel, E. M. Controlled doping of large-area trilayer MoS2 with molecular reductants and oxidants. Adv. Mater. 2015, 27, 1175–1181.

    Article  CAS  Google Scholar 

  36. Lin, J. D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S. Q.; Zhang, X. A.; Wang, L.; Zhang, H.; Wee, A. T. S. et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 2014, 8, 5323–5329.

    Article  CAS  Google Scholar 

  37. Cho, K.; Min, M.; Kim, T. Y.; Jeong, H.; Pak, J.; Kim, J. K.; Jang, J.; Yun, S. J.; Lee, Y. H.; Hong, W. K. et al. Electrical and optical characterization of MoS2 with sulfur vacancy passivation by treatment with alkanethiol molecules. ACS Nano 2015, 9, 8044–8053.

    Article  CAS  Google Scholar 

  38. Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.

    Article  CAS  Google Scholar 

  39. Iqbal, M. W.; Amin, A.; Kamran, M. A.; Ateeq, H.; Elahi, E.; Hussain, G.; Azam, S.; Aftab, S.; Alharbi, T.; Majid, A. Tailoring the electrical properties of MoTe2 field effect transistor via chemical doping. Superlattices Microstruct. 2019, 135, 106247.

    Article  CAS  Google Scholar 

  40. Jo, S. H.; Kang, D. H.; Shim, J.; Jeon, J.; Jeon, M. H.; Yoo, G.; Kim, J.; Lee, J.; Yeom, G. Y.; Lee, S. et al. A high-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv. Mater. 2016, 28, 4824–4831.

    Article  CAS  Google Scholar 

  41. Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

    Article  CAS  Google Scholar 

  42. Lee, B.; Chen, Y.; Duerr, F.; Mastrogiovanni, D.; Garfunkel, E.; Andrei, E. Y.; Podzorov, V. Modification of electronic properties of graphene with self-assembled monolayers. Nano Lett. 2010, 10, 2427–2432.

    Article  CAS  Google Scholar 

  43. Nalwa, H. S. A review of molybdenum disulfide (MoS2) based photodetectors: From ultra-broadband, self-powered to flexible devices. RSC Adv. 2020, 10, 30529–30602

    Article  CAS  Google Scholar 

  44. Ruppert, C.; Aslan, O. B.; Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 2014, 14, 6231–6236.

    Article  CAS  Google Scholar 

  45. Lin, Y. F.; Xu, Y.; Wang, S. T.; Li, S. L.; Yamamoto, M.; Aparecido-Ferreira, A.; Li, W. W.; Sun, H. B.; Nakaharai, S.; Jian, W. B. et al. Ambipolar MoTe2 transistors and their applications in logic circuits. Adv. Mater. 2014, 26, 3263–3269.

    Article  CAS  Google Scholar 

  46. Ji, H.; Lee, G.; Joo, M. K.; Yun, Y.; Yi, H.; Park, J. H.; Suh, D.; Lim, S. C. Thickness-dependent carrier mobility of ambipolar MoTe2: Interplay between interface trap and Coulomb scattering. Appl. Phys. Lett. 2017, 110, 183501.

    Article  CAS  Google Scholar 

  47. Jin, S. H.; Park, M. S.; Shur, M. S. Photosensitive inverter and ring oscillator with pseudodepletion mode load for LCD applications. IEEE Electron Device Lett. 2009, 30, 943–945.

    Article  CAS  Google Scholar 

  48. Ryu, J. H.; Baek, G. W.; Yu, S. J.; Seo, S. G.; Jin, S. H. Photosensitive full-swing multi-layer MoS2 inverters with light shielding layers. IEEE Electron Device Lett. 2017, 38, 67–70.

    Article  CAS  Google Scholar 

  49. Seo, S. G.; Han, S. W.; Cha, H. Y.; Yang, S.; Jin, S. H. Light-shield layers free photosensitive inverters comprising GaN-Drivers and multi-layered MoS2-Loads. IEEE Electron Device Lett. 2019, 40, 107–110.

    CAS  Google Scholar 

  50. Seo, S. G.; Jin, S. H. Photosensitive complementary inverters based on n-channel MoS2 and p-channel MoTe2 transistors for light-to-frequency conversion circuits. Phys. Status Solidi Rapid Res. Lett. 2019, 13, 1900317.

    Article  CAS  Google Scholar 

  51. Hsieh, H. H.; Tsai, T. T.; Chang, C. Y.; Wang, H. H.; Huang, J. Y.; Hsu, S. F.; Wu, Y. C.; Tsai, T. C.; Chuang, C. S.; Chang, L. H. et al. 11.2: A 2.4in. AMOLED with IGZO TFTs and inverted OLED devices. SID Symp. Dig. Tech. Pap. 2010, 41, 140–143.

    Article  CAS  Google Scholar 

  52. Hosono, H.; Kim, J.; Toda, Y.; Kamiya, T.; Watanabe, S. Transparent amorphous oxide semiconductors for organic electronics: Application to inverted OLEDs. Proc. Natl. Acad. Sci. USA 2017, 114, 233–238.

    Article  CAS  Google Scholar 

  53. Gindl, M.; Sinn, G.; Gindl, W.; Reiterer, A.; Tschegg, S. A comparison of different methods to calculate the surface free energy of wood using contact angle measurements. Colloids Surf. A Physicochem. Eng. Asp. 2001, 181, 279–287.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2020R1A6A1A03041954) and partly supported by (i) the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2019R1F1A1062767) and by (ii) the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (No. NRF-2021R1A2C1012593).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Hun Jin.

Electronic Supplementary Material

12274_2021_3523_MOESM1_ESM.pdf

Reversible and controllable threshold voltage modulation for n-channel MoS2 and p-channel MoTe2 field-effect transistors via multiple counter doping with ODTS/poly-L-lysine charge enhancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, S.G., Jeong, J., Kim, S.Y. et al. Reversible and controllable threshold voltage modulation for n-channel MoS2 and p-channel MoTe2 field-effect transistors via multiple counter doping with ODTS/poly-L-lysine charge enhancers. Nano Res. 14, 3214–3227 (2021). https://doi.org/10.1007/s12274-021-3523-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3523-8

Keywords

Navigation