Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Nano Research
  3. Article

Phase constitution of the noble metal thin-film complex solid solution system Ag-Ir-Pd-Pt-Ru in dependence of elemental compositions and annealing temperatures

  • Research Article
  • Open Access
  • Published: 11 May 2021
  • volume 15, pages 4827–4836 (2022)
Download PDF

You have full access to this open access article

Nano Research Aims and scope Submit manuscript
Phase constitution of the noble metal thin-film complex solid solution system Ag-Ir-Pd-Pt-Ru in dependence of elemental compositions and annealing temperatures
Download PDF
  • Bin Xiao1,
  • Xiao Wang1,
  • Alan Savan1 &
  • …
  • Alfred Ludwig1,2 
  • 496 Accesses

  • 2 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

Abstract

Multiple-principal element alloys hold great promise for multifunctional material discovery (e.g., for novel electrocatalysts based on complex solid solutions) in a virtually unlimited compositional space. Here, the phase constitution of the noble metal system Ag-Ir-Pd-Pt-Ru was investigated over a large compositional range in the quinary composition space and for different annealing temperatures from 600 to 900 °C using thin-film materials libraries. Composition-dependent X-ray diffraction mapping of the as-deposited thin-film materials library indicates different phases being present across the composition space (face-centered cubic (fcc), hexagonal close packed (hcp) and mixed fcc + hcp), which are strongly dependent on the Ru content. In general, low Ru contents promote the fcc phase, whereas high Ru contents favor the formation of an hcp solid-solution phase. Furthermore, a temperature-induced phase transformation study was carried out for a selected measurement area of fcc-Ag5Ir8Pd56Pt8Ru23. With increasing temperature, the initial fcc phase transforms to an intermediate C14-type Laves phase at 360 °C, and then to hcp when the temperature reaches 510 °C. The formation and disappearance of the hexagonal Laves phase, which covers a wide temperature range, plays a crucial role of bridging the fcc to hcp phase transition. The obtained composition, phase and temperature data are transformed into phase maps which could be used to guide theoretical studies and lay a basis for tuning the functional properties of these materials.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303.

    Article  CAS  Google Scholar 

  2. Zhang, Y.; Zuo, T. T.; Tang, Z.; Gao, M. C.; Dahmen, K. A.; Liaw, P. K.; Lu, Z. P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 67, 1–93.

    Article  CAS  Google Scholar 

  3. Tsai, M. H.; Yeh, J. W. High-entropy alloys: A critical review. Mater. Res. Lett. 2014, 2, 107–123.

    Article  CAS  Google Scholar 

  4. Tsai, K. Y.; Tsai, M. H.; Yeh, J. W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897.

    Article  CAS  Google Scholar 

  5. Murty, B. S.; Yeh, J. W.; Ranganathan, S.; Bhattacharjee, P. High-Entropy Alloys. Elsevier, 2019.

  6. George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534.

    Article  CAS  Google Scholar 

  7. Yeh, J. W. Recent progress in high-entropy alloys. Eur. J. Control. 2006, 31, 633–648.

    CAS  Google Scholar 

  8. Senkov, O. N.; Wilks, G. B.; Miracle, D. B.; Chuang, C. P.; Liaw, P. K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765.

    Article  CAS  Google Scholar 

  9. Hsu, Y. J.; Chiang, W. C.; Wu, J. K. Corrosion behavior of FeCoNiCrCu high-entropy alloys in 3.5% sodium chloride solution. Mater. Chem. Phys. 2005, 92, 112–117.

    Article  CAS  Google Scholar 

  10. Kao, Y. F.; Chen, T. J.; Chen, S. K.; Yeh, J. W. Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J. Alloys Compd. 2009, 488, 57–64.

    Article  CAS  Google Scholar 

  11. Li, Z. Z.; Zhao, S. T.; Ritchie, R. O.; Meyers, M. A. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci. 2019, 102, 296–345.

    Article  CAS  Google Scholar 

  12. Steurer, W. Single-phase high-entropy alloys —A critical update. Mater. Charact. 2020, 162, 110179.

    Article  CAS  Google Scholar 

  13. Senkov, O. N.; Wilks, G. B.; Scott, J. M.; Miracle, D. B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706.

    Article  CAS  Google Scholar 

  14. Senkov, O. N.; Scott, J. M.; Senkova, S. V.; Miracle, D. B.; Woodward, C. F. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 2011, 509, 6043–6048.

    Article  CAS  Google Scholar 

  15. Singh, P.; Smirnov, A. V.; Johnson, D. D. Ta-Nb-Mo-W refractory high-entropy alloys: Anomalous ordering behavior and its intriguing electronic origin. Phys. Rev. Mater. 2018, 2, 055004.

    Article  CAS  Google Scholar 

  16. Youssef, K. M.; Zaddach, A. J.; Niu, C. N.; Irving, D. L.; Koch, C. C. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 2015, 3, 95–99.

    Article  CAS  Google Scholar 

  17. Lužnik, J.; Koželj, P.; Vrtnik, S.; Jelen, A.; Jagličić, Z.; Meden, A.; Feuerbacher, M.; Dolinšek, J. Complex magnetism of Ho-Dy-Y-Gd-Tb hexagonal high-entropy alloy. Phys. Rev. B 2015, 92, 224201.

    Article  CAS  Google Scholar 

  18. Soler, R.; Evirgen, A.; Yao, M.; Kirchlechner, C.; Stein, F.; Feuerbacher, M.; Raabe, D.; Dehm, G. Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high entropy alloy with hexagonal close-packed structure. Acta Mater. 2018, 156, 86–96.

    Article  CAS  Google Scholar 

  19. Pedersen, J. K.; Batchelor, T. A. A.; Bagger, A.; Rossmeisl, J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 2020, 10, 2169–2176.

    Article  CAS  Google Scholar 

  20. Sohn, S.; Liu, Y. H.; Liu, J. B.; Gong, P.; Prades-Rodel, S.; Blatter, A.; Scanley, B. E.; Broadbridge, C. C.; Schroers, J. Noble metal high entropy alloys. Scr. Mater. 2017, 126, 29–32.

    Article  CAS  Google Scholar 

  21. Yin, B. L.; Curtin, W. A. First-principles-based prediction of yield strength in the RhIrPdPtNiCu high-entropy alloy. npj Comput. Mater. 2019, 5, 14.

    Article  CAS  Google Scholar 

  22. Yusenko, K. V.; Riva, S.; Carvalho, P. A.; Yusenko, M. V.; Arnaboldi, S.; Sukhikh, A. S.; Hanfland, M.; Gromilov, S. A. First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater. 2017, 138, 22–27.

    Article  CAS  Google Scholar 

  23. Nellaiappan, S.; Katiyar, N. K.; Kumar, R.; Parui, A.; Malviya, K. D.; Pradeep, K. G.; Singh, A. K.; Sharma, S.; Tiwary, C. S.; Biswas, K. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: Experimental realization. ACS Catal. 2020, 10, 3658–3663.

    Article  CAS  Google Scholar 

  24. d’Acremont, Q.; Pernot, G.; Rampnoux, J. M.; Furlan, A.; Lacroix, D.; Ludwig, A.; Dilhaire, S. High-throughput heterodyne thermoreflectance: Application to thermal conductivity measurements of a Fe-Si-Ge thin film alloy library. Rev. Sci. Instrum. 2017, 88, 074902.

    Article  CAS  Google Scholar 

  25. Khare, C.; Sliozberg, K.; Stepanovich, A.; Schuhmann, W.; Ludwig, A. Combinatorial synthesis and high-throughput characterization of structural and photoelectrochemical properties of Fe:WO3 nanostructured libraries. Nanotechnology 2017, 28, 185604.

    Article  CAS  Google Scholar 

  26. Li, Z. M.; Ludwig, A.; Savan, A.; Springer, H.; Raabe, D. Combinatorial metallurgical synthesis and processing of high-entropy alloys. J. Mater. Res. 2018, 33, 3156–3169.

    Article  CAS  Google Scholar 

  27. Lowry, M. S.; Hudson, W. R.; Pascal, R. A.; Bernhard, S. Accelerated luminophore discovery through combinatorial synthesis. J. Am. Chem. Soc. 2004, 126, 14129–14135.

    Article  CAS  Google Scholar 

  28. Briceño, G.; Chang, H.; Sun, X. D.; Schultz, P. G.; Xiang, X. D. A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis. Science 1995, 270, 273–275.

    Article  Google Scholar 

  29. Wambach, M.; Nguyen, N.; Hamann, S.; Nishio, M.; Yagyu, S.; Chikyow, T.; Ludwig, A. Electrical and structural properties of the partial ternary thin-film system Ni-Si-B. ACS Comb. Sci. 2019, 21, 310–315.

    Article  CAS  Google Scholar 

  30. Wang, X.; Rogalla, D.; Ludwig, A. Influences of W content on the phase transformation properties and the associated stress change in thin film substrate combinations studied by fabrication and characterization of thin film V1−xWxO2 materials libraries. ACS Comb. Sci. 2018, 20, 229–236.

    Article  CAS  Google Scholar 

  31. Hanak, J. J. The “multiple-sample concept” in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 1970, 5, 964–971.

    Article  CAS  Google Scholar 

  32. Hanak, J. J.; Gittleman, J. I.; Pellicane, J. P.; Bozowski, S. The effect of grain size on the superconducting transition temperature of the transition metals. Phys. Lett. A 1969, 30, 201–202.

    Article  CAS  Google Scholar 

  33. Böttcher, A.; Haase, G.; Thun, R. Strukturuntersuchung von Mehrstoffsystemen durch kinematische Elektronenbeugung. Z. Metallkde. 1955, 46, 386–400.

    Google Scholar 

  34. Schweizer, F.; Hindsgaul, O. Combinatorial synthesis of carbohydrates. Curr. Opin. Chem. Biol. 1999, 3, 291–298.

    Article  CAS  Google Scholar 

  35. Li, Y. J.; Kostka, A.; Savan, A.; Ludwig, A. Atomic-scale investigation of fast oxidation kinetics of nanocrystalline CrMnFeCoNi thin films. J. Alloys Compd. 2018, 766, 1080–1085.

    Article  CAS  Google Scholar 

  36. Ludwig, A. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. npj Comput. Mater. 2019, 5, 70.

    Article  Google Scholar 

  37. Naujoks, D.; Weiser, M.; Salomon, S.; Stein, H.; Virtanen, S.; Ludwig, A. Combinatorial study on phase formation and oxidation in the thin film superalloy subsystems Co-Al-Cr and Co-Al-Cr-W. ACS Comb. Sci. 2018, 20, 611–620.

    Article  CAS  Google Scholar 

  38. Kumari, S.; Gutkowski, R.; Junqueira, J. R. C.; Kostka, A.; Hengge, K.; Scheu, C.; Schuhmann, W.; Ludwig, A. Combinatorial synthesis and high-throughput characterization of Fe-V-O thin-film materials libraries for solar water splitting. ACS Comb. Sci. 2018, 20, 544–553.

    Article  CAS  Google Scholar 

  39. Batchelor, T. A. A.; Löffler, T.; Xiao, B.; Krysiak, O. A.; Strotkötter, V.; Pedersen, J. K.; Clausen, C. M.; Savan, A.; Li, Y. J.; Schuhmann, W. Complex-solid-solution electrocatalyst discovery by computational prediction and high-throughput experimentation. Angew. Chem., Int. Ed. 2020, 133, 7008–7013.

    Article  Google Scholar 

  40. Liu, X. H.; Luo, J.; Zhu, J. Size effect on the crystal structure of silver nanowires. Nano Lett. 2006, 6, 408–412.

    Article  CAS  Google Scholar 

  41. Guo, Q. X.; Zhao, Y. S.; Mao, W. L.; Wang, Z. W.; Xiong, Y. J.; Xia, Y. N. Cubic to tetragonal phase transformation in cold-compressed Pd nanocubes. Nano Lett. 2008, 8, 972–975.

    Article  CAS  Google Scholar 

  42. Zhang, Q.; Kusada, K.; Wu, D. S.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Selective control of fcc and hcp crystal structures in Au-Ru solid-solution alloy nanoparticles. Nat. Commun. 2018, 9, 510.

    Article  CAS  Google Scholar 

  43. Rabadia, C. D.; Liu, Y. J.; Wang, L.; Sun, H.; Zhang, L. C. Laves phase precipitation in Ti-Zr-Fe-Cr alloys with high strength and large plasticity. Mater. Des. 2018, 154, 228–238.

    Article  CAS  Google Scholar 

  44. Erdmann, B.; Keller, C. Actinide(lanthanide)-noble metal alloy phases, preparation and properties. J. Solid State Chem. 1973, 7, 40–48.

    Article  CAS  Google Scholar 

  45. Compton, V. B.; Matthias, B. T. Laves phase compounds of rare earths and hafnium with noble metals. Acta Cryst. 1959, 12, 651–654.

    Article  CAS  Google Scholar 

  46. Stein, F.; Palm, M.; Sauthoff, G. Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability. Intermetallics 2004, 12, 713–720.

    Article  CAS  Google Scholar 

  47. Scudino, S.; Donnadieu, P.; Surreddi, K. B.; Nikolowski, K.; Stoica, M.; Eckert, J. Microstructure and mechanical properties of Laves phase-reinforced Fe-Zr-Cr alloys. Intermetallics 2009, 17, 532–539.

    Article  CAS  Google Scholar 

  48. Jiang, H.; Jiang, L.; Qiao, D. X.; Lu, Y. P.; Wang, T. M.; Cao, Z. Q.; Li, T. J. Effect of niobium on microstructure and properties of the CoCrFeNbxNi high entropy alloys. J. Mater. Sci. Technol. 2017, 33, 712–717.

    Article  CAS  Google Scholar 

  49. Cheng, J. B.; Liang, X. B.; Xu, B. S. Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings. Surf. Coat. Technol. 2014, 240, 184–190.

    Article  CAS  Google Scholar 

  50. Zhou, Y. J.; Zhang, Y.; Wang, Y. L.; Chen, G. L. Solid solution alloys of Al Co Cr Fe Ni Tix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 2007, 90, 181904.

    Article  CAS  Google Scholar 

  51. Zhou, D.; Usher, B. F. Deviation of the AlGaAs lattice constant from Vegard’s law. J. Phys. D: Appl. Phys. 2001, 34, 1461.

    Article  CAS  Google Scholar 

  52. Li, W.; Pessa, M.; Likonen, J. Lattice parameter in GaNAs epilayers on GaAs: Deviation from Vegard’s law. Appl. Phys. Lett. 2001, 78, 2864–2866.

    Article  CAS  Google Scholar 

  53. Liu, L. G.; Bassett, W. A. Compression of Ag and phase transformation of NaCl. J. Appl. Phys. 1973, 44, 1475–1479.

    Article  CAS  Google Scholar 

  54. Singh, H. P. Determination of thermal expansion of germanium, rhodium and iridium by X-rays. Acta Cryst 1968, A24, 469–471.

    Article  Google Scholar 

  55. Bredig, G.; Allolio, R. Röntgenuntersuchungen an katalytisch wirkenden Metallen. Z. Phys. Chem. 1927, 126, 41–71.

    Article  CAS  Google Scholar 

  56. Edwards, J. W.; Speiser, R.; Johnston, H. L. High temperature structure and thermal expansion of some metals as determined by X-ray diffraction data. I. Platinum, tantalum, niobium, and molybdenum. J. Appl. Phys. 1951, 22, 424–428.

    Article  CAS  Google Scholar 

  57. Schroder, R. H.; Schmitz-Pranghe, N.; Kohlhaas, R. Experimentelle bestimmung der gitterparameter der platinmetalle im temperaturbereich -190 bis 1709 °C. Z. Metallkd. 1972, 63, 12–16.

    Google Scholar 

Download references

Acknowledgements

ZGH is acknowledged for the use of its scientific infrastructure. This work was funded by Deutsche Forschungsgemeinschaft (DFG), projects LU1175/26-1 and LU1175/22-1.

Funding

Funding note Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Materials Discovery and Interfaces, Institute for Materials, Ruhr University Bochum, 44780, Bochum, Germany

    Bin Xiao, Xiao Wang, Alan Savan & Alfred Ludwig

  2. Zentrum für Grenzflächendominierte Höchstleistungswerkstoffe (ZGH), Ruhr University Bochum, 44780, Bochum, Germany

    Alfred Ludwig

Authors
  1. Bin Xiao
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Xiao Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Alan Savan
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Alfred Ludwig
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alfred Ludwig.

Electronic Supplementary Material

12274_2021_3516_MOESM1_ESM.pdf

Phase constitution of the noble metal thin-film complex solid solution system Ag-Ir-Pd-Pt-Ru in dependence of elemental compositions and annealing temperatures

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, B., Wang, X., Savan, A. et al. Phase constitution of the noble metal thin-film complex solid solution system Ag-Ir-Pd-Pt-Ru in dependence of elemental compositions and annealing temperatures. Nano Res. 15, 4827–4836 (2022). https://doi.org/10.1007/s12274-021-3516-7

Download citation

  • Received: 08 January 2021

  • Revised: 08 April 2021

  • Accepted: 12 April 2021

  • Published: 11 May 2021

  • Issue Date: June 2022

  • DOI: https://doi.org/10.1007/s12274-021-3516-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • noble metal high-entropy alloys
  • phase transformation
  • combinatorial synthesis and high-throughput characterization
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Associated Content

Part of a collection:

High entropy Nanomaterials

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature