Skip to main content
Log in

The precursor compound of two types of ZnSe magic-sized clusters

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Precursor compounds (PCs) link quantum dots (QDs) and magic-sized clusters (MSCs), which is pivotal in the conversion between QDs and MSCs. Here, for the first time, we report the transformation, synthesis, and composition of a type of ZnSe PCs. ZnSe PCs can be directly transformed to two different MSCs with the assistance of octylamine and acetic acid at room temperature. The two types of MSCs exhibit sharp absorption peaks at 299 and 328 nm which are denoted as MSC-299 and MSC-328. In the preparation of ZnSe PCs, diphenylphosphine (DPP) as an additive plays a key role which not only inhibits the thermal decomposition of Zn precursor, but also acts as a reducing agent to reduce the by-products produced in the reaction. The composition was explored by X-ray photoelectron spectroscopy, energy dispersive spectrometer, matrix-assisted laser desorption/ionization time-of-flight mass spectra with ZnSe PC powder appeared as white powder after purifying by toluene (Tol) and methanol (MeOH). The results indicate that the molar ratio of Zn/Se is 2:1 with a molecular of ∼ 3,350 Da. Therefore, we propose that the molecular formula of ZnSe PCs is Zn32Se16. In addition, at the molecular level, the covalent bond of Zn-Se is formed in ZnSe PCs. This study offers a deeper understanding of the transformation from PCs to MSCs and for the first time proposes the composition of PCs. Meanwhile, this research provides us with a new understanding of the role of DPP in the synthesis of colloidal semiconductor nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

    Article  CAS  Google Scholar 

  2. Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407–412.

    Article  CAS  Google Scholar 

  3. Hung, C. C.; Ho, S. J.; Yeh, C. W.; Chen, G. H.; Huang, J. H.; Chen, H. S. Highly luminescent dual-color-emitting alloyed [ZnxCd1−xSeyS1−y] quantum dots: Investigation of bimodal growth and application to lighting. J. Phys. Chem. C 2017, 121, 28373–28384.

    Article  CAS  Google Scholar 

  4. Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803.

    Article  CAS  Google Scholar 

  5. Chen, H. S.; Wang, S. J. J.; Lo, C. J.; Chi, J. Y. White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes. Appl. Phys. Lett. 2005, 86, 131905.

    Article  Google Scholar 

  6. Wei, H. T.; Sun, H. Z.; Zhang, H.; Gao, C.; Yang, B. An effective method to prepare polymer/nanocrystal composites with tunable emission over the whole visible light range. Nano Res. 2010, 3, 496–505.

    Article  CAS  Google Scholar 

  7. Li, Z. J.; Li, S. Y.; Davis, A. H.; Hofman, E.; Leem, G.; Zheng, W. W. Enhanced singlet oxygen generation by hybrid Mn-doped nanocomposites for selective photo-oxidation of benzylic alcohols. Nano Res. 2020, 13, 1668–1676.

    Article  CAS  Google Scholar 

  8. Sarkar, A.; Gracia-Espino, E.; Wågberg, T.; Shchukarev, A.; Mohl, M.; Rautio, A. R.; Pitkänen, O.; Sharifi, T.; Kordas, K.; Mikkola, J. P. Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway. Nano Res. 2016, 9, 1956–1968.

    Article  CAS  Google Scholar 

  9. Ke, F.; Wang, L. H.; Zhu, J. F. Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation. Nano Res. 2015, 8, 1834–1846.

    Article  CAS  Google Scholar 

  10. Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.

    Article  CAS  Google Scholar 

  11. Yao, T. T.; Zhao, Q.; Qiao, Z. P.; Peng, F.; Wang, H. J.; Yu, H.; Chi, C.; Yang, J. Chemical synthesis, structural characterization, optical properties, and photocatalytic activity of ultrathin ZnSe nanorods. Chem.—Eur. J. 2011, 17, 8663–8670.

    Article  CAS  Google Scholar 

  12. Ehsan, M. F.; Bashir, S.; Hamid, S.; Zia, A.; Abbas, Y.; Umbreen, K.; Ashiq, M. N.; Shah, A. One-pot facile synthesis of the ZnO/ZnSe heterostructures for efficient photocatalytic degradation of azo dye. Appl. Surf. Sci. 2018, 459, 194–200.

    Article  CAS  Google Scholar 

  13. Meng, X. B.; Sheng, J. L.; Tang, H. L.; Sun, X. J.; Dong, H.; Zhang, F. M. Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst. Appl. Catal. B Environ. 2019, 244, 340–346.

    Article  CAS  Google Scholar 

  14. Liu, X.; Wen, D. L.; Liu, Z.; Wei, J.; Bu, D. L.; Huang, S. M. Thiocyanate-capped CdSe@Zn1−xCdxS gradient alloyed quantum dots for efficient photocatalytic hydrogen evolution. Chem. Eng. J. 2020, 402, 126178.

    Article  CAS  Google Scholar 

  15. Xiao, R.; Zhao, C. X.; Zou, Z. Y.; Chen, Z. P.; Tian, L.; Xu, H. T.; Tang, H.; Liu, Q. Q.; Lin, Z. X.; Yang, X. F. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 268, 118382.

    Article  CAS  Google Scholar 

  16. Zhao, K.; Pan, Z. X.; Mora-Seró, I.; Cánovas, E.; Wang, H.; Song, Y.; Gong, X. Q.; Wang, J.; Bonn, M.; Bisquert, J. et al. Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. J. Am. Chem. Soc. 2015, 137, 5602–5609.

    Article  CAS  Google Scholar 

  17. Jin, B. B.; Kong, S. Y.; Zhang, G. Q.; Chen, X. Q.; Ni, H. S.; Zhang, F.; Wang, D. J.; Zeng, J. H. Voltage-assisted SILAR deposition of CdSe quantum dots to construct a high performance of ZnS/CdSe/ZnS quantum dot-sensitized solar cells. J. Colloid Interface Sci. 2021, 586, 640–646.

    Article  CAS  Google Scholar 

  18. Huang, F.; Zhang, L. S.; Zhang, Q. F.; Hou, J.; Wang, H. G.; Wang, H. L.; Peng, S. L.; Liu, J. S.; Cao, G. Z. High efficiency CdS/CdSe quantum dot sensitized solar cells with two ZnSe layers. ACS Appl. Mater. Interfaces 2016, 8, 34482–34489.

    Article  CAS  Google Scholar 

  19. Huang, F.; Hou, J.; Wang, H. G.; Tang, H.; Liu, Z. Y.; Zhang, L. S.; Zhang, Q. F.; Peng, S. L.; Liu, J. S.; Cao, G. Z. Impacts of surface or interface chemistry of ZnSe passivation layer on the performance of CdS/CdSe quantum dot sensitized solar cells. Nano Energy 2017, 32, 433–440.

    Article  CAS  Google Scholar 

  20. Melendres-Sánchez, J. C.; López-Delgado, R.; Saavedra-Rodríguez, G.; Carrillo-Torres, R. C.; Sánchez-Zeferino, R.; Ayón, A.; Álvarez-Ramos, M. E. Zinc sulfide quantum dots coated with PVP: Applications on commercial solar cells. J. Mater. Sci: Mater. Electron. 2021, 32, 1457–1465.

    Google Scholar 

  21. Luo, W. N.; Jiu, T. G.; Kuang, C. Y.; Li, B. R.; Lu, F. S.; Fang, J. F. Dithiol treatments enhancing the efficiency of hybrid solar cells based on PTB7 and CdSe nanorods. Nano Res. 2015, 8, 3045–3053.

    Article  CAS  Google Scholar 

  22. Kumar, A.; Li, K. T.; Madaria, A. R.; Zhou, C. W. Sensitization of hydrothermally grown single crystalline TiO2 nanowire array with CdSeS nanocrystals for photovoltaic applications. Nano Res. 2011, 4, 1181–1190.

    Article  CAS  Google Scholar 

  23. Marandi, M.; Abadi, S. H. Aqueous synthesis of colloidal CdSexTe1−x-CdS core-shell nanocrystals and effect of shell formation parameters on the efficiency of corresponding quantum dot sensitized solar cells. Sol. Energy 2020, 209, 387–399.

    Article  CAS  Google Scholar 

  24. Zhou, R. H.; Sun, S. K.; Li, C. H.; Wu, L.; Hou, X. D.; Wu, P. Enriching Mn-doped ZnSe quantum dots onto mesoporous silica nanoparticles for enhanced fluorescence/magnetic resonance imaging dual-modal bio-imaging. ACS Appl. Mater. Interfaces 2018, 10, 34060–34067.

    Article  CAS  Google Scholar 

  25. Zhang, J.; Wang, J.; Yan, T.; Peng, Y. N.; Xu, D. J.; Deng, D. W. InP/ZnSe/ZnS quantum dots with strong dual emissions: Visible excitonic emission and near-infrared surface defect emission and their application in in vitro and in vivo bioimaging. J. Mater. Chem. B 2017, 5, 8152–8160.

    Article  CAS  Google Scholar 

  26. Che, D. C.; Zhu, X. X.; Wang, H. Z.; Duan, Y. R.; Zhang, Q. H.; Li, Y. G. Aqueous synthesis of high bright and tunable near-infrared AgInSe2-ZnSe quantum dots for bioimaging. J. Colloid Interface Sci. 2016, 463, 1–7.

    Article  CAS  Google Scholar 

  27. Zhao, B. X.; Yao, Y. L.; Yang, K.; Rong, P. F.; Huang, P.; Sun, K.; An, X.; Li, Z. M.; Chen, X. Y.; Li, W. W. Mercaptopropionic acid-capped Mn2+: ZnSe/ZnO quantum dots with both downconversion and upconversion emissions for bioimaging applications. Nanoscale 2014, 6, 12345–12349.

    Article  CAS  Google Scholar 

  28. Zhu, T. T.; Zhang, B. W.; Zhang, J.; Lu, J.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Han, S.; Yu, K. Two-step nucleation of CdS magic-size nanocluster MSC-311. Chem. Mater. 2017, 29, 5727–5735.

    Article  CAS  Google Scholar 

  29. Wang, L. X.; Hui, J.; Tang, J. B.; Rowell, N.; Zhang, B. W.; Zhu, T. T.; Zhang, M.; Hao, X. Y.; Fan, H. S.; Zeng, J. R. et al. Precursor self-assembly identified as a general pathway for colloidal semiconductor magic-size clusters. Adv. Sci. 2018, 5, 1800632.

    Article  Google Scholar 

  30. Liu, S. P.; Yu, Q. Y.; Zhang, C. C.; Zhang, M.; Rowell, N.; Fan, H. S.; Huang, W.; Yu, K.; Liang, B. Transformation of ZnS precursor compounds to magic-size clusters exhibiting optical absorption peaking at 269 nm. J. Phys. Chem. Lett. 2020, 11, 75–82.

    Article  CAS  Google Scholar 

  31. Li, L. J.; Zhang, J.; Zhang, M.; Rowell, N.; Zhang, C. C.; Wang, S. L.; Lu, J.; Fan, H. S.; Huang, W.; Chen, X. Q. et al. Fragmentation of magic-size cluster precursor compounds into ultrasmall CdS quantum dots with enhanced particle yield at low temperatures. Angew. Chem., Int. Ed. 2020, 59, 12013–12021.

    Article  CAS  Google Scholar 

  32. Palencia, C.; Yu, K.; Boldt, K. The future of colloidal semiconductor magic-size clusters. ACS Nano 2020, 14, 1227–1235.

    Article  CAS  Google Scholar 

  33. Liu, M. Y.; Wang, K.; Wang, L. X.; Han, S.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F. G.; Zeng, J. R. et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun. 2017, 8, 15467.

    CAS  Google Scholar 

  34. Luan, C. R.; Gökçinar, Ö. Ö.; Rowell, N.; Kreouzis, T.; Han, S.; Zhang, M.; Fan, H. S.; Yu, K. Evolution of two types of CdTe magic-size clusters from a single induction period sample. J. Phys. Chem. Lett. 2018, 9, 5288–5295.

    Article  CAS  Google Scholar 

  35. Luan, C. R.; Tang, J. B.; Rowell, N.; Zhang, M.; Huang, W.; Fan, H. S.; Yu, K. Four types of CdTe magic-size clusters from one prenucleation stage sample at room temperature. J. Phys. Chem. Lett. 2019, 10, 4345–4353.

    Article  CAS  Google Scholar 

  36. Tang, J. B.; Hui, J.; Zhang, M.; Fan, H. S.; Rowell, N.; Huang, W.; Jiang, Y. N.; Chen, X. Q.; Yu, K. CdS magic-size clusters exhibiting one sharp ultraviolet absorption singlet peaking at 361 nm. Nano Res. 2019, 12, 1437–1444.

    Article  CAS  Google Scholar 

  37. Chen, M.; Luan, C. R.; Zhang, M.; Rowell, N.; Willis, M.; Zhang, C. C.; Wang, S. L.; Zhu, X. H.; Fan, H. S.; Huang, W. et al. Evolution of CdTe magic-size clusters with single absorption doublet assisted by adding small molecules during prenucleation. J. Phys. Chem. Lett. 2020, 11, 2230–2240.

    Article  CAS  Google Scholar 

  38. Zhu, D. K.; Hui, J.; Rowell, N.; Liu, Y. Y.; Chen, Q. Y.; Steegemans, T.; Fan, H. S.; Zhang, M.; Yu, K. Interpreting the ultraviolet absorption in the spectrum of 415 nm-bandgap CdSe magic-size clusters. J. Phys. Chem. Lett. 2018, 9, 2818–2824.

    Article  CAS  Google Scholar 

  39. Zhang, J.; Li, L. J.; Rowell, N.; Kreouzis, T.; Willis, M.; Fan, H. S.; Zhang, C. C.; Huang, W.; Zhang, M.; Yu, K. One-step approach to single-ensemble CdS magic-size clusters with enhanced production yields. J. Phys. Chem. Lett. 2019, 10, 2725–2732.

    Article  CAS  Google Scholar 

  40. Zhang, J.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Han, S.; Fan, H. S.; Zhang, C. C.; Hu, C. W.; Zhang, M.; Yu, K. Individual pathways in the formation of magic-size clusters and conventional quantum dots. J. Phys. Chem. Lett. 2018, 9, 3660–3666.

    Article  CAS  Google Scholar 

  41. Gao, D.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Lockwood, D. J.; Han, S.; Fan, H. S.; Zhang, H.; Zhang, C. C.; Jiang, Y. N. et al. Formation of colloidal alloy semiconductor CdTeSe magic-size clusters at room temperature. Nat. Commun. 2019, 10, 1674.

    Article  Google Scholar 

  42. Zhang, B. W.; Zhu, T. T.; Ou, M. Y.; Rowell, N.; Fan, H. S.; Han, J. T.; Tan, L.; Dove, M. T.; Ren, Y.; Zuo, X. B. et al. Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. Nat. Commun. 2018, 9, 2499.

    Article  Google Scholar 

  43. Sanz, E.; Vega, C.; Espinosa, J. R.; Caballero-Bernal, R.; Abascal, J. L. F.; Valeriani, C. Homogeneous ice nucleation at moderate supercooling from molecular simulation. J. Am. Chem. Soc. 2013, 135, 15008–15017.

    Article  CAS  Google Scholar 

  44. Bai, G. Y.; Gao, D.; Liu, Z.; Zhou, X.; Wang, J. J. Probing the critical nucleus size for ice formation with graphene oxide nanosheets. Nature 2019, 576, 437–441.

    Article  CAS  Google Scholar 

  45. LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.

    Article  CAS  Google Scholar 

  46. Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630.

    Article  CAS  Google Scholar 

  47. García-Rodríguez, R.; Hendricks, M. P.; Cossairt, B. M.; Liu, H. T.; Owen, J. S. Conversion reactions of cadmium chalcogenide nanocrystal precursors. Chem. Mater. 2013, 25, 1233–1249.

    Article  Google Scholar 

  48. Xie, L. S.; Shen, Y.; Franke, D.; Sebástian, V.; Bawendi, M. G.; Jensen, K. F. Characterization of indium phosphide quantum dot growth intermediates using MALDI-TOF mass spectrometry. J. Am. Chem. Soc. 2016, 138, 13469–13472.

    Article  CAS  Google Scholar 

  49. Nevers, D. R.; Williamson, C. B.; Savitzky, B. H.; Hadar, I.; Banin, U.; Kourkoutis, L. F.; Hanrath, T.; Robinson, R. D. Mesophase formation stabilizes high-purity magic-sized clusters. J. Am. Chem. Soc. 2018, 140, 3652–3662.

    Article  CAS  Google Scholar 

  50. Wurmbrand, D.; Fischer, J. W. A.; Rosenberg, R.; Boldt, K. Morphogenesis of anisotropic nanoparticles: Self-templating via non-classical, fibrillar Cd2Se intermediates. Chem. Commun. 2018, 54, 7358–7361.

    Article  CAS  Google Scholar 

  51. Evans, C. M.; Evans, M. E.; Krauss, T. D. Mysteries of TOPSe revealed: Insights into quantum dot nucleation. J. Am. Chem. Soc. 2010, 132, 10973–10975.

    Article  CAS  Google Scholar 

  52. Nguyen, T. L.; Michael, M.; Mulvaney, P. Synthesis of highly crystalline CdSe@ZnO nanocrystals via monolayer-by-monolayer epitaxial shell deposition. Chem. Mater. 2014, 26, 4274–4279.

    Article  CAS  Google Scholar 

  53. Musić, S.; Šarić, A.; Popović, S. Formation of nanosize ZnO particles by thermal decomposition of zinc acetylacetonate monohydrate. Ceram. Int. 2010, 36, 1117–1123.

    Article  Google Scholar 

  54. Yu, K.; Hrdina, A.; Zhang, X. G.; Ouyang, J. Y.; Leek, D. M.; Wu, X. H.; Gong, M. L.; Wilkinson, D.; Li, C. S. Highly-photoluminescent ZnSe nanocrystals via a non-injection-based approach with precursor reactivity elevated by a secondary phosphine. Chem. Commun. 2011, 47, 8811–8813.

    Article  CAS  Google Scholar 

  55. Galian, R. E.; Diaz, P.; Ribera, A.; Rincón-Bertolín, A.; Agouram, S.; Pérez-Prieto, J. Controlled building of CdSe@ZnS/Au and CdSe@ZnS/Au2S/Au nanohybrids. Nano Res. 2015, 8, 2271–2287.

    Article  CAS  Google Scholar 

  56. Wang, Y.; Shao, Y. Y.; Matson, D. W.; Li, J. H.; Lin, Y. H. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 2010, 4, 1790–1798.

    Article  CAS  Google Scholar 

  57. Yang, J.; Muckel, F.; Baek, W.; Fainblat, R.; Chang, H.; Bacher, G.; Hyeon, T. Chemical synthesis, doping, and transformation of magic-sized semiconductor alloy nanoclusters. J. Am. Chem. Soc. 2017, 139, 6761–6770.

    Article  CAS  Google Scholar 

  58. Wang, Y. Y.; Liu, Y. H.; Zhang, Y.; Wang, F. D.; Kowalski, P. J.; Rohrs, H. W.; Loomis, R. A.; Gross, M. L.; Buhro, W. E. Isolation of the magic-size CdSe nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. Angew. Chem., Int. Ed. 2012, 51, 6154–6157.

    Article  CAS  Google Scholar 

  59. Wang, Y. Y.; Zhang, Y.; Wang, F. D.; Giblin, D. E.; Hoy, J.; Rohrs, H. W.; Loomis, R. A.; Buhro, W. E. The magic-size nanocluster (CdSe34 as a low-temperature nucleant for cadmium selenide nanocrystals; room-temperature growth of crystalline quantum platelets. Chem. Mater. 2014, 26, 2233–2243.

    Article  CAS  Google Scholar 

  60. Kasuya, A.; Sivamohan, R.; Barnakov, Y. A.; Dmitruk, I. M.; Nirasawa, T.; Romanyuk, V. R.; Kumar, V.; Mamykin, S. V.; Tohji, K.; Jeyadevan, B. et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater. 2004, 3, 99–102.

    Article  CAS  Google Scholar 

  61. Yang, J.; Xue, C.; Yu, S. H.; Zeng, J. H.; Qian, Y. T. General synthesis of semiconductor chalcogenide nanorods by using the monodentate ligand n-butylamine as a shape controller. Angew. Chem., Int. Ed. 2002, 41, 4697–4700.

    Article  CAS  Google Scholar 

  62. Xue, S. L.; Wu, S. X.; Zeng, Q. Z.; Xie, P.; Gan, K. X.; Wei, J.; Bu, S. Y.; Ye, X. N.; Xie, L.; Zou, R. J. et al. Synthesis, field emission properties and optical properties of ZnSe nanoflowers. Appl. Surf. Sci. 2016, 365, 69–75.

    Article  CAS  Google Scholar 

  63. Panda, A. B.; Acharya, S.; Efrima, S. Ultranarrow ZnSe nanorods and nanowires: Structure, spectroscopy, and one-dimensional properties. Adv. Mater. 2005, 17, 2471–2474.

    Article  CAS  Google Scholar 

  64. Acharya, S.; Panda, A. B.; Efrima, S.; Golan, Y. Polarization properties and switchable assembly of ultranarrow ZnSe nanorods. Adv. Mater. 2007, 19, 1105–1108.

    Article  CAS  Google Scholar 

  65. Mahieu, N. G.; Patti, G. J. Systems-level annotation of a metabolomics data set reduces 25□000 features to fewer than 1000 unique metabolites. Anal. Chem. 2017, 89, 10397–10406.

    Article  CAS  Google Scholar 

  66. Pezzatti, J.; Boccard, J.; Codesido, S.; Gagnebin, Y.; Joshi, A.; Picard, D.; González-Ruiz, V.; Rudaz, S. Implementation of liquid chromatography-high resolution mass spectrometry methods for untargeted metabolomic analyses of biological samples: A tutorial. Anal. Chim. Acta 2020, 1105, 28–44.

    Article  CAS  Google Scholar 

  67. Xi, L. F.; Cho, D. Y.; Duchamp, M.; Boothroyd, C. B.; Lek, J. Y.; Besmehn, A.; Waser, R.; Lam, Y. M.; Kardynal, B. Understanding the role of single molecular ZnS precursors in the synthesis of In(Zn)P/ZnS nanocrystals. ACS Appl. Mater. Interfaces 2014, 6, 18233–18242.

    Article  CAS  Google Scholar 

  68. Mourdikoudis, S.; Liz-Marzán, L. M. Oleylamine in nanoparticle synthesis. Chem. Mater. 2013, 25, 1465–1476.

    Article  CAS  Google Scholar 

  69. Cordeiro, M. A. L.; Weng, W. H.; Stroppa, D. G.; Kiely, C. J.; Leite, E. R. High resolution electron microscopy study of nanocubes and polyhedral nanocrystals of cerium(IV) oxide. Chem. Mater. 2013, 25, 2028–2034.

    Article  CAS  Google Scholar 

  70. Demortière, A.; Panissod, P.; Pichon, B. P.; Pourroy, G.; Guillon, D.; Donnio, B.; Bégin-Colin, S. Size-dependent properties of magnetic iron oxidenanocrystals. Nanoscale 2011, 3, 225–232.

    Article  Google Scholar 

  71. Yu, K.; Hrdina, A.; Ouyang, J. Y.; Kingston, D.; Wu, X. H.; Leek, D. M.; Liu, X. Y.; Li, C. S. Ultraviolet ZnSe1−xSx gradient-alloyed nanocrystals via a noninjection approach. ACS Appl. Mater. Interfaces 2012, 4, 4302–4311.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K. Y. gives her thanks to the National Natural Science Foundation of China (NSFC) (No. 21773162), the Applied Basic Research Programs of Science and Technology Department of Sichuan Province (No. 2020YJ0326) and the State Key Laboratory of Supramolecular Structures and Materials of Jilin University (SKLSSM 202035). M. Z. is grateful to Sichuan University Postdoctoral Research Fund (No. 2019SCU12073) and the Fundamental Research Funds for the Central Universities. We are grateful to Dr. Shaolan Wang and Dr. Shuguang Yan in the Analytical & Testing Center of Sichuan University for the respective TGA and XPS measurements, and Dr. Shuguang Yan for his help for the analysis of XPS results. Also, we thank Ms. Jiao Lu in the Engineering Research Center in Biomaterials of Sichuan University for her help in MALDI-TOF MS measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaoran Luan or Kui Yu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhang, M., Shen, Q. et al. The precursor compound of two types of ZnSe magic-sized clusters. Nano Res. 15, 465–474 (2022). https://doi.org/10.1007/s12274-021-3503-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3503-z

Keywords

Navigation