Skip to main content
Log in

Two-dimensional selenium and its composites for device applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) selenium was synthesized successfully in 2017. Its advanced properties, including size-dependent bandgap, excellent environmental robustness, strong photoluminescence effect, anisotropic thermal conductivity, and high photoconductivity, render it and selenium-based composites a promising candidate for various device applications. These include batteries, modulators, photodetectors, and photothermal effects in medical applications. However, compared to other commonly used 2D materials, such as graphene, transition metal dichalcogenides, and black phosphorus, 2D Se is much less known. Motivated by the need to overcome this lack of knowledge, this article focuses on recent progress and elucidates the crystal structure, synthesis methods, physical properties, applications, challenges, and prospects of 2D Se nanoflakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, C.; Hu, T.; Wu, Y. B.; Gao, H.; Yang, Y. L.; Ren, W. 2D selenium allotropes from first principles and swarm intelligence. J. Phys.: Condens. Matter. 2019, 31, 235702.

    CAS  Google Scholar 

  2. Fan, T. J.; Xie, Z. J.; Huang, W. C.; Li, Z. J.; Zhang, H. Two-dimensional non-layered selenium nanoflakes: Facile fabrications and applications for self-powered photo-detector. Nanotechnology 2019, 30, 114002.

    Article  CAS  Google Scholar 

  3. Suslov, A.; Bikorimana, S.; Lama, P.; Sukharenko, V.; Walser, A.; Dorsinville, R. Synthesis of selenium nanoparticles and their nonlinear optical properties. J. Nonlinear. Opt. Phys. Mater. 2017, 26, 1750016.

    Article  CAS  Google Scholar 

  4. Xing, C. Y.; Xie, Z. J.; Liang, Z. M.; Liang, W. Y.; Fan, T. J.; Ponraj, J. S.; Dhanabalan, S. C.; Fan, D. Y.; Zhang, H. 2D nonlayered selenium nanosheets: Facile synthesis, photoluminescence, and ultrafast photonics. Adv. Opt. Mater. 2017, 5, 1700884.

    Article  Google Scholar 

  5. Cheng, M. J.; Wu, S. Q.; Zhu, Z. Z.; Guo, G. Y. Large second-harmonic generation and linear electro-optic effect in trigonal selenium and tellurium. Phy. Rev. B 2019, 100, 035202.

    Article  CAS  Google Scholar 

  6. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  7. Zhao, W. S.; Shi, K. F.; Lu, Z. L. Greatly enhanced ultrabroadband light absorption by monolayer graphene. Opt. Lett. 2013, 38, 4342–4345.

    Article  CAS  Google Scholar 

  8. Echtermeyer, T. J.; Nene, P. S.; Trushin, M.; Gorbachev, R. V.; Eiden, A. L.; Milana, S.; Sun, Z.; Schliemann, J.; Lidorikis, E.; Novoselov, K. S. et al. Photothermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors. Nano Lett. 2014, 14, 3733–3742.

    Article  CAS  Google Scholar 

  9. Sun, Z. H.; Chang, H. X. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano 2014, 8, 4133–4156.

    Article  CAS  Google Scholar 

  10. Geng, D. C.; Wang, H. P.; Wan, Y.; Xu, Z. P.; Luo, B. R.; Xu, J.; Yu, G. Direct top-down fabrication of large-area graphene arrays by an in situ etching method. Adv. Mater. 2015, 27, 4195–4199.

    Article  CAS  Google Scholar 

  11. Mudd, G. W.; Svatek, S. A.; Hague, L.; Makarovsky, O.; Kudrynskyi, Z. R.; Mellor, C. J.; Beton, P. H.; Eaves, L.; Novoselov, K. S.; Kovalyuk, Z. D. et al. High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures. Adv. Mater. 2015, 27, 3760–3766.

    Article  CAS  Google Scholar 

  12. Xu, Y. J.; Shi, Z.; Shi, X. Y.; Zhang, K.; Zhang, H. Recent progress in black phosphorus and black-phosphorus-analogue materials: Properties, synthesis and applications. Nanoscale 2019, 11, 14491–14527.

    Article  CAS  Google Scholar 

  13. Hu, H. G.; Shi, Z.; Khan, K.; Cao, R.; Liang, W. Y.; Tareen, A. K.; Zhang, Y.; Huang, W. C.; Guo, Z. N.; Luo, X. L. et al. Recent advances in doping engineering of black phosphorus. J. Mater. Chem. A 2020, 8, 5421–5441.

    Article  CAS  Google Scholar 

  14. Lan, C. Y.; Shi, Z.; Cao, R.; Li, C.; Zhang, H. 2D materials beyond graphene toward Si integrated infrared optoelectronic devices. Nanoscale 2020, 12, 11784–11807.

    Article  CAS  Google Scholar 

  15. Shi, Z.; Ren, X. H.; Qiao, H.; Cao, R.; Zhang, Y.; Qi, X.; Zhang, H. Recent insights into the robustness of two-dimensional black phosphorous in optoelectronic applications. J. Photoch. Photobio. C: Photoch. Rev. 2020, 43, 100354.

    Article  CAS  Google Scholar 

  16. Zhang, H.; Lu, S. B.; Zheng, J.; Du, J.; Wen, S. C.; Tang, D. Y.; Loh, K. P. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Exp. 2014, 22, 7249–7260.

    Article  CAS  Google Scholar 

  17. Zhao, X. X.; Fu, D. Y.; Ding, Z. J.; Zhang, Y. Y.; Wan, D. Y.; Tan, S. J. R.; Chen, Z. X.; Leng, K.; Dan, J. D.; Fu, W. et al. Mo-terminated edge reconstructions in nanoporous molybdenum disulfide film. Nano Lett. 2018, 18, 482–490.

    Article  CAS  Google Scholar 

  18. Shi, Z.; Cao, R.; Khan, K.; Tareen, A. K.; Liu, X. S.; Liang, W. Y.; Zhang, Y.; Ma, C. Y.; Guo, Z. N.; Luo, X. L. et al. Two-dimensional tellurium: Progress, challenges, and prospects. Nano-Micro Lett. 2020, 12, 99.

    Article  CAS  Google Scholar 

  19. He, Z.; Yang, Y.; Liu, J. W.; Yu, S. H. Emerging tellurium nano-structures: Controllable synthesis and their applications. Chem. Soc. Rev. 2017, 46, 2732–2753.

    Article  CAS  Google Scholar 

  20. Wu, W. Z.; Qiu, G.; Wang, Y. X.; Wang, R. X.; Ye, P. D. Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 2018, 47, 7203–7212.

    Article  CAS  Google Scholar 

  21. Qin, J. K.; Qiu, G.; Jian, J.; Zhou, H.; Yang, L. M.; Charnas, A.; Zemlyanov, D. Y.; Xu, C. Y.; Xu, X. F.; Wu, W. Z. et al. Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications. ACS Nano 2017, 11, 10222–10229.

    Article  CAS  Google Scholar 

  22. Sharma, R.; Pandey, J.; Sahoo, K. R.; Rana, K. S.; Biroju, R. K.; Theis, W.; Soni, A.; Narayanan, T. N. Spectroscopic correlation of chalcogen defects in atomically thin MoS2(1-x)Se2x alloys. J. Phy. Mater. 2020, 3, 045001.

    Article  CAS  Google Scholar 

  23. Li, Y.; Xu, Y. H.; Wang, Z. H.; Bai, Y.; Zhang, K.; Dong, R. Q.; Gao, Y. N.; Ni, Q.; Wu, F.; Liu, Y. J. et al. Stable carbon-selenium bonds for enhanced performance in Tremella-like 2D chalcogenide battery anode. Adv. Energy Mater. 2018, 8, 1800927.

    Article  Google Scholar 

  24. Jin, W. W.; Li, H. J.; Zou, J. Z.; Inguva, S.; Zhang, Q.; Zeng, S. Z.; Xu, G. Z.; Zeng, X. R. 2D ultrathin carbon nanosheets derived from interconnected Al-MOF as excellent hosts to anchor selenium for Li-Se battery. Mater. Lett. 2019, 252, 211–214.

    Article  CAS  Google Scholar 

  25. Deng, N. P.; Feng, Y.; Wang, G.; Wang, X. X.; Wang, L. Y.; Li, Q. X.; Zhang, L. T.; Kang, W. M.; Cheng, B. W.; Liu, Y. Rational structure designs of 2D materials and their applications toward advanced lithium-sulfur battery and lithium-selenium battery. Chem. Eng. J. 2020, 401, 125976.

    Article  CAS  Google Scholar 

  26. Song, X. R.; Wang, X. Y.; Yu, S. X.; Cao, J. B.; Li, S. H.; Li, J.; Liu, G.; Yang, H. H.; Chen, X. Y. Co9Se8 nanoplates as a new theranostic platform for photoacoustic/magnetic resonance dual-modal-imaging-guided chemo-photothermal combination therapy. Adv. Mater. 2015, 27, 3285–3291.

    Article  CAS  Google Scholar 

  27. Li, Z. B.; Shao, J. D.; Luo, Q.; Yu, X. F.; Xie, H. H.; Fu, H. D.; Tang, S. Y.; Wang, H. Y.; Han, G. L.; Chu, P. K. Cell-borne 2D nanomaterials for efficient cancer targeting and photothermal therapy. Biomaterials 2017, 133, 37–48.

    Article  CAS  Google Scholar 

  28. Ramírez-Montes, L.; López-Pérez, W.; González-Hernández, R.; Pinilla, C. Large thermoelectric figure of merit in hexagonal phase of 2D selenium and tellurium. Int. J. Quantum. Chem. 2020, 120, e26267.

    Article  Google Scholar 

  29. Guo, S. D.; Wang, Y. H. Thermoelectric properties of orthorhombic group IV-VI monolayers from the first-principles calculations. J. App. Phy. 2017, 121, 034302.

    Article  Google Scholar 

  30. Chen, J. H.; Hamann, D. M.; Choi, D.; Poudel, N.; Shen, L.; Shi, L.; Johnson, D. C.; Cronin, S. Enhanced cross-plane thermoelectric transport of rotationally disordered SnSe2 via Se-vapor annealing. Nano Lett. 2018, 18, 6876–6881.

    Article  CAS  Google Scholar 

  31. Xian, L. D.; Paz, A. P.; Bianco, E.; Ajayan, P. M.; Rubio, A. Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater. 2017, 4, 041003.

    Article  Google Scholar 

  32. Xie, Z. J.; Xing, C. Y.; Huang, W. C.; Fan, T. J.; Li, Z. J.; Zhao, J. L.; Xiang, Y. J.; Guo, Z. N.; Li, J. Q.; Yang, Z. G. et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 2018, 28, 1705833.

    Article  Google Scholar 

  33. Wang, Y. X.; Qiu, G.; Wang, R. X.; Huang, S. Y.; Wang, Q. X.; Liu, Y. Y.; Du, Y. C.; Goddard III, W. A.; Kim, M. J.; Xu, X. F. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228–236.

    Article  Google Scholar 

  34. Liu, Y. Y.; Wu, W. Z.; Goddard III, W. A. Tellurium: Fast electrical and atomic transport along the weak interaction direction. J. Am. Chem. Soc. 2018, 140, 550–553.

    Article  CAS  Google Scholar 

  35. Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44–126.

    Article  CAS  Google Scholar 

  36. Lv, R.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y. F.; Mallouk, T. E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 2015, 48, 56–64.

    Article  CAS  Google Scholar 

  37. Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

    Article  CAS  Google Scholar 

  38. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    Article  CAS  Google Scholar 

  39. Kasirga, T. S. Chemical vapor transport synthesis of a selenium-based two-dimensional material. Turk. J. Phys. 2018, 42, 293–301.

    CAS  Google Scholar 

  40. Bang, G. S.; Nam, K. W.; Kim, J. Y.; Shin, J.; Choi, J. W.; Choi, S. Y. Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 7084–7089.

    Article  CAS  Google Scholar 

  41. Huo, C. X.; Yan, Z.; Song, X. F.; Zeng, H. B. 2D materials via liquid exfoliation: A review on fabrication and applications. Sci. Bull. 2015, 60, 1994–2008.

    Article  CAS  Google Scholar 

  42. Sharma, A.; Joshi, A.; Verma, G.; Toor, A. P. Surfactant assisted liquid phase exfoliation of graphene via probe tip sonication. AIP Conf. Proc. 2015, 1675, 030047.

    Article  Google Scholar 

  43. Shen, J. F.; He, Y. M.; Wu, J. J.; Gao, C. T.; Keyshar, K.; Zhang, X.; Yang, Y. C.; Ye, M. X.; Vajtai, R.; Lou, J. et al. Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett. 2015, 15, 5449–5454.

    Article  CAS  Google Scholar 

  44. Zhu, Y. J.; Hu, X. L. Preparation of powders of selenium nanorods and nanowires by microwave-polyol method. Mater. Lett. 2004, 58, 1234–1236.

    Article  CAS  Google Scholar 

  45. Zhu, W.; Xu, H.; Wang, W.; Shi, J. Controlled synthesis of trigonal selenium nanowires via a facile solution route. Appl. Phys. A 2006, 83, 281–284.

    Article  CAS  Google Scholar 

  46. Yang, Z. Q.; Sreeram, C.; Klabunde, K. J. A facile pathway to synthesize one-dimensional selenium (Se) with controllable morphology. Chem. Lett. 2009, 38, 252–253.

    Article  CAS  Google Scholar 

  47. Zhang, J. J.; Xu, Y. H.; Fan, L.; Zhu, Y. C.; Liang, J. W.; Qian, Y. T. Graphene-encapsulated selenium/polyaniline core-shell nanowires with enhanced electrochemical performance for Li-Se batteries. Nano Energy 2015, 13, 592–600.

    Article  CAS  Google Scholar 

  48. Niu, Y. F.; Yang, Y.; Yang, W. T. Hydrothermal synthesis and nanomechanical performance of one-dimensional selenium nano-structures. Chin. J. Inorganic. Chem. 2016, 32, 2129–2135.

    CAS  Google Scholar 

  49. Sun, Y. F.; Sun, Z. H.; Gao, S.; Cheng, H.; Liu, Q. H.; Piao, J. Y.; Yao, T.; Wu, C. Z.; Hu, S. L.; Wei, S. Q. et al. Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat. Commun. 2012, 3, 1057.

    Article  Google Scholar 

  50. Xu, Y.; Zhao, W. W.; Xu, R.; Shi, Y. M.; Zhang, B. Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem. Commun. 2013, 49, 9803–9805.

    Article  CAS  Google Scholar 

  51. Wang, F. M.; Li, Y. C.; Shifa, T. A.; Liu, K. L.; Wang, F.; Wang, Z. X.; Xu, P.; Wang, Q. S.; He, J. Selenium-enriched nickel selenide nanosheets as a robust electrocatalyst for hydrogen generation. Angew. Chem., Int. Ed. 2016, 55, 6919–6924.

    Article  CAS  Google Scholar 

  52. Sun, Z. Q.; Liao, T.; Dou, Y. H.; Hwang, S. M.; Park, M. S.; Jiang, L.; Kim, J. H.; Dou, S. X. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 2014, 5, 3813.

    Article  CAS  Google Scholar 

  53. Aerts, M.; Bielewicz, T.; Klinke, C.; Grozema, F. C.; Houtepen, A. J.; Schins, J. M.; Siebbeles, L. D. A. Highly efficient carrier multiplication in PbS nanosheets. Nat. Commun. 2014, 5, 3789.

    Article  Google Scholar 

  54. Gao, S.; Sun, Y. F.; Lei, F. C.; Liang, L.; Liu, J. W.; Bi, W. T.; Pan, B. C.; Xie, Y. Ultrahigh energy density realized by a single-layer β-Co(OH)2 all-solid-state asymmetric supercapacitor. Angew. Chem., Int. Ed. 2014, 126, 13003–13007.

    Article  Google Scholar 

  55. Zhu, Y. Q.; Cao, C. B.; Tao, S.; Chu, W. S.; Wu, Z. Y.; Li, Y. D. Ultrathin nickel hydroxide and oxide nanosheets: Synthesis, characterizations and excellent supercapacitor performances. Sci. Rep. 2014, 4, 5787.

    Article  CAS  Google Scholar 

  56. Deng, M. M.; Kwac, K.; Li, M.; Jung, Y.; Park, H. G. Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide. Nano Lett. 2017, 17, 2342–2348.

    Article  CAS  Google Scholar 

  57. Ahmad, S.; Guo, X. Rapid development in two-dimensional layered perovskite materials and their application in solar cells. Chin. Chem. Lett. 2018, 29, 657–663.

    Article  CAS  Google Scholar 

  58. Chen, Y. N.; Yu, S.; Sun, Y.; Liang, Z. Q. Phase engineering in quasi-2D ruddlesden-popper perovskites. J. Phy. Chem. Lett. 2018, 9, 2627–2631.

    Article  CAS  Google Scholar 

  59. Vu, Q. A.; Yu, W. J. Devices layer up for stability. Nat. Electron. 2018, 1, 98–99.

    Article  Google Scholar 

  60. Shi, Z. M.; Cao, Z.; Sun, X. J.; Jia, Y. P.; Li, D. B.; Cavallo, L.; Schwingenschlögl, U. Uncovering the mechanism behind the improved stability of 2D organic-inorganic hybrid perovskites. Small 2019, 15, e1900462.

    Article  Google Scholar 

  61. Wang, X. W.; Sun, Y. H.; Liu, K. Chemical and structural stability of 2D layered materials. 2D Mater. 2019, 6, 042001.

    Article  CAS  Google Scholar 

  62. Çakır, D.; Peeters, F. M.; Sevik, C. Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: A comparative study. Appl. Phy. Lett. 2014, 104, 203110.

    Article  Google Scholar 

  63. Oh, S.; Lim, J. Y.; Im, S.; Choi, H. J. Stability, efficiency, and mechanism of n-type doping by hydrogen adatoms in two-dimensional transition metal dichalcogenides. Phy. Rev. B 2019, 100, 085416.

    Article  CAS  Google Scholar 

  64. Hemmat, Z.; Cavin, J.; Ahmadiparidari, A.; Ruckel, A.; Rastegar, S.; Misal, S. N.; Majidi, L.; Kumar, K.; Wang, S. X.; Guo, J. L. et al. Quasi-binary transition metal dichalcogenide alloys: Thermodynamic stability prediction, scalable synthesis, and application. Adv. Mater. 2020, 32, 1907041.

    Article  CAS  Google Scholar 

  65. Iqbal, M. W.; Elahi, E.; Amin, A.; Hussain, G.; Aftab, S. Chemical doping of transition metal dichalcogenides (TMDCs) based field effect transistors: A review. Superlatt. Microst. 2020, 137, 106350.

    Article  CAS  Google Scholar 

  66. Andharia, E.; Kaloni, T. P.; Salamo, G. J.; Yu, S. Q.; Churchill, H. O. H.; Barraza-Lopez, S. Exfoliation energy, quasiparticle band structure, and excitonic properties of selenium and tellurium atomic chains. Phy. Rev. B 2018, 98, 035420.

    Article  CAS  Google Scholar 

  67. Ray, C.; Dutta, S.; Sarkar, S.; Sahoo, R.; Roy, A.; Pal, T. A facile synthesis of 1D nano structured selenium and Au decorated nano selenium: Catalysts for the clock reaction. Rsc. Adv. 2013, 3, 24313–24320.

    Article  CAS  Google Scholar 

  68. Mak, K. F.; Sfeir, M. Y.; Wu, Y.; Lui, C. H.; Misewich, J. A.; Heinz, T. F. Measurement of the optical conductivity of graphene. Phy. Rev. Lett. 2008, 101, 196405.

    Article  Google Scholar 

  69. Zuev, Y. M.; Chang, W.; Kim, P. Thermoelectric and magnet-othermoelectric transport measurements of graphene. Phy. Rev. Lett. 2009, 102, 096807.

    Article  Google Scholar 

  70. Flores, E.; Ares, J. R.; Castellanos-Gomez, A.; Barawi, M.; Ferrer, I. J.; Sánchez, C. Thermoelectric power of bulk black-phosphorus. App. Phys. Lett. 2015, 106, 022102.

    Article  Google Scholar 

  71. Larentis, S.; Fallahazad, B.; Tutuc, E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phy. Lett. 2012, 101, 223104.

    Article  Google Scholar 

  72. Hong, S.; Im, H.; Hong, Y. K.; Liu, N.; Kim, S.; Park, J. H. n-type doping effect of CVD-grown multilayer MoSe2 thin film transistors by two-step functionalization. Adv. Electron. Mater. 2018, 4, 1800308.

    Article  Google Scholar 

  73. Khosa, G. S.; Gupta, S.; Kumar, R. Modulation of electronic transport coefficients of monolayer MoSe2 by biaxial strain. AIP Conf. Proc. 2020, 2220, 100006.

    Article  CAS  Google Scholar 

  74. Hong, Y.; Zhang, J. C.; Zeng, X. C. Thermal conductivity of monolayer MoSe2 and MoS2. J. Phy. Chem. C 2016, 120, 26067–26075.

    Article  CAS  Google Scholar 

  75. Lim, D.; Kannan, E. S.; Lee, I.; Rathi, S.; Li, L. J.; Lee, Y.; Khan, M. A.; Kang, M.; Park, J.; Kim, G. H. High performance MoS2-based field-effect transistor enabled by hydrazine doping. Nanotechnology 2016, 27, 225201.

    Article  Google Scholar 

  76. Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H. S. J.; Steele, G. A.; Castellanos-Gomez, A. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 2013, 13, 358–363.

    Article  CAS  Google Scholar 

  77. Huang, H. H.; Fan, X. F.; Singh, D. J.; Zheng, W. T. Recent progress of TMD nanomaterials: Phase transitions and applications. Nanoscale 2020, 12, 1247–1268.

    Article  CAS  Google Scholar 

  78. Yu, Z.; Yao, Y. Y.; Sendeku, M. G.; Yin, L.; Zhan, X. Y.; Wang, F.; Wang, Z. X.; He, J. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 2019, 31, 1901694.

    Article  Google Scholar 

  79. Ghosh, K.; Singisetti, U. Thermoelectric transport coefficients in mono-layer MoS2 and WSe2: Role of substrate, interface phonons, plasmon, and dynamic screening. J. Appl. Phy. 2015, 118, 135711.

    Article  Google Scholar 

  80. Zhao, B.; Dang, W. Q.; Yang, X. D.; Li, J.; Bao, H. H.; Wang, K.; Luo, J.; Zhang, Z. W.; Li, B.; Xie, H. P. et al. van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors. Nano Res. 2019, 12, 1683–1689.

    Article  CAS  Google Scholar 

  81. Iqbal, M. W.; Iqbal, M. Z.; Khan, M. F.; Shehzad, M. A.; Seo, Y.; Park, J. H.; Hwang, C.; Eom, J. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 2015, 5, 10699.

    Article  CAS  Google Scholar 

  82. Khalil, H. M. W.; Khan, M. F.; Eom, J.; Noh, H. Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: Reduction in contact resistance. ACS. Appl. Mater. Interfaces 2015, 7, 23589–23596.

    Article  CAS  Google Scholar 

  83. Kawai, H.; Sugahara, M.; Okada, R.; Maniwa, Y.; Yomogida, Y.; Yanagi, K. Thermoelectric properties of WS2 nanotube networks. Appl. Phys. Express 2017, 10, 015001.

    Article  Google Scholar 

  84. Zhao, X. J.; Wan, H. Z.; Liang, P.; Wang, N. Z.; Wang, C.; Gan, Y.; Chen, X.; Tan, Q. Y.; Liu, X.; Zhang, J. et al. Favorable anion adsorption/desorption of high rate NiSe2 nanosheets/hollow mesoporous carbon for battery-supercapacitor hybrid devices. Nano Res. 2020.

  85. Wei, Q. L.; Li, R. P.; Lin, C. Q.; Han, A. L.; Nie, A. M.; Li, Y. R.; Li, L. J.; Cheng, Y. C.; Huang, W. Quasi-two-dimensional se-terminated bismuth oxychalcogenide (Bi2O2Se). ACS Nano 2019, 13, 13439–13444.

    Article  CAS  Google Scholar 

  86. Abutalib, M. M. Strain tunable electrical and optical properties of two dimensional tetragonal MgX (X = S, Se) monolayer semiconductors. Superlatt. Microst. 2020, 144, 106570.

    Article  CAS  Google Scholar 

  87. Huang, H.; Ma, C. C.; Zhu, Z.; Yao, X.; Liu, Y.; Liu, Z.; Li, C. X.; Yan, Y. S. Insights into enhanced visible light photocatalytic activity of T-Se nanorods/BiOCl ultrathin nanosheets 1D/2D heterojunctions. Chem. Eng. J. 2018, 338, 218–229.

    Article  CAS  Google Scholar 

  88. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

    Article  CAS  Google Scholar 

  89. Hardie, D. G. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 2007, 8, 774–785.

    Article  CAS  Google Scholar 

  90. Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Buildings 2008, 40, 394–398.

    Article  Google Scholar 

  91. Bozell, J. J.; Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539–554.

    Article  CAS  Google Scholar 

  92. Mohsenian-Rad, A. H.; Wong, V. W. S.; Jatskevich, J.; Schober, R.; Leon-Garcia, A. Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans. Smart. Grid. 2010, 1, 320–331.

    Article  Google Scholar 

  93. Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717.

    Article  CAS  Google Scholar 

  94. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  CAS  Google Scholar 

  95. Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.

    Article  CAS  Google Scholar 

  96. Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

    Article  CAS  Google Scholar 

  97. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  CAS  Google Scholar 

  98. Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.

    Article  CAS  Google Scholar 

  99. Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

    Article  CAS  Google Scholar 

  100. Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

    Article  CAS  Google Scholar 

  101. Hofmann, A. F.; Fronczek, D. N.; Bessler, W. G. Mechanistic modeling of polysulfide shuttle and capacity loss in lithium-sulfur batteries. J. Power Sources 2014, 259, 300–310.

    Article  CAS  Google Scholar 

  102. Xu, R.; Li, J. C. M.; Lu, J.; Amine, K.; Belharouak, I. Demonstration of highly efficient lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 4170–4179.

    Article  CAS  Google Scholar 

  103. Hippauf, F.; Nickel, W.; Hao, G. P.; Schwedtmann, K.; Giebeler, L.; Oswald, S.; Borchardt, L.; Doerfler, S.; Weigand, J. J.; Kaskel, S. The importance of pore size and surface polarity for polysulfide adsorption in lithium sulfur batteries. Adv. Mater. Interfaces 2016, 3, 1600508.

    Article  Google Scholar 

  104. Jia, L.; Wu, T. P.; Lu, J.; Ma, L.; Zhu, W. T.; Qiu, X. P. Polysulfides capture-copper additive for long cycle life lithium sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 30248–30255.

    Article  CAS  Google Scholar 

  105. Dai, H. L.; Yuan, B. Y.; Bai, C. Y.; Lai, C.; Wang, C. Communication-direct observation of the shuttle phenomenon in lithium-sulfur batteries via the digital holographic method. J. Electrochem. Soc. 2018, 165, A2866–A2868.

    Article  CAS  Google Scholar 

  106. Deng, J. N.; Li, J.; Guo, J. Q.; Zeng, M.; Zhao, D.; Yang, X. Vapor growth carbon fiber felt as an efficient interlayer for trapping polysulfide in lithium-sulfur battery. Int. J. Electrochem. Sci. 2018, 13, 3651–3659.

    Article  CAS  Google Scholar 

  107. Mistry, A. N.; Mukherjee, P. P. “Shuttle” in polysulfide shuttle: Friend or foe? J. Phy. Chem. C 2018, 122, 23845–23851.

    Article  CAS  Google Scholar 

  108. Liu, L. L.; Hou, Y. Y.; Wu, X. W.; Xiao, S. Y.; Chang, Z.; Yang, Y. Q.; Wu, Y. P. Nanoporous selenium as a cathode material for rechargeable lithium-selenium batteries. Chem. Commun. 2013, 49, 11515–11517.

    Article  CAS  Google Scholar 

  109. Yang, C. P.; Xin, S.; Yin, Y. X.; Ye, H.; Zhang, J.; Guo, Y. G. An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. Angew. Chem., Int. Ed. 2013, 52, 8363–8367.

    Article  CAS  Google Scholar 

  110. Jiang, S. F.; Zhang, Z. A.; Lai, Y. Q.; Qu, Y. H.; Wang, X. W.; Li, J. Selenium encapsulated into 3D interconnected hierarchical porous carbon aerogels for lithium-selenium batteries with high rate performance and cycling stability. J. Power Sources 2014, 267, 394–404.

    Article  CAS  Google Scholar 

  111. Liu, Y. X.; Si, L.; Zhou, X. S.; Liu, X.; Xu, Y.; Bao, J. C.; Dai, Z. H. A selenium-confined microporous carbon cathode for ultrastable lithium-selenium batteries. J. Mater. Chem. A 2014, 2, 17735–17739.

    Article  CAS  Google Scholar 

  112. Jiang, Y.; Ma, X. J.; Feng, J. K.; Xiong, S. L. Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium-selenium batteries. J. Mater. Chem. A 2015, 3, 4539–4546.

    Article  CAS  Google Scholar 

  113. Peng, X.; Wang, L.; Zhang, X. M.; Gao, B.; Fu, J. J.; Xiao, S.; Huo, K. F.; Chu, P. K. Reduced graphene oxide encapsulated selenium nanoparticles for high-power lithium-selenium battery cathode. J. Power Sources 2015, 288, 214–220.

    Article  CAS  Google Scholar 

  114. Yi, Z. Q.; Yuan, L. X.; Sun, D.; Li, Z.; Wu, C.; Yang, W. J.; Wen, Y. W.; Shan, B.; Huang, Y. H. High-performance lithium-selenium batteries promoted by heteroatom-doped microporous carbon. J. Mater. Chem. A 2015, 3, 3059–3065.

    Article  CAS  Google Scholar 

  115. Eftekhari, A. The rise of lithium-selenium batteries. Sustain. Energy Fuels 2017, 1, 14–29.

    Article  CAS  Google Scholar 

  116. Abouimrane, A.; Dambournet, D.; Chapman, K. W.; Chupas, P. J.; Weng, W.; Amine, K. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J. Am. Chem. Soc. 2012, 134, 4505–4508.

    Article  CAS  Google Scholar 

  117. Cui, Y. J.; Abouimrane, A.; Lu, J.; Bolin, T.; Ren, Y.; Weng, W.; Sun, C. J.; Maroni, V. A.; Heald, S. M.; Amine, K. (De) Lithiation mechanism of Li/SeSx (x = 0–7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy. J. Am. Chem. Soc. 2013, 135, 8047–8056.

    Article  CAS  Google Scholar 

  118. Han, K.; Liu, Z.; Shen, J. M.; Lin, Y. Y.; Dai, F.; Ye, H. Q. A freestanding and ultralong-life lithium-selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture. Adv. Funct. Mater. 2015, 25, 455–463.

    Article  CAS  Google Scholar 

  119. Tang, Y. X.; Zhang, Y. Y.; Li, W. L.; Ma, B.; Chen, X. D. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 2015, 46, 5926–5940.

    Article  Google Scholar 

  120. Jun, L.; Song, K. P.; van Aken, P. A.; Maier, J.; Yu, Y. Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible li-ion batteries. Nano Lett. 2014, 14, 2597–2603.

    Article  Google Scholar 

  121. Cai, Y.; Wang, H. E.; Huang, S. Z.; Jin, J.; Wang, C.; Yu, Y.; Li, Y.; Su, B. L. Hierarchical nanotube-constructed porous TiO2-B spheres for high performance lithium ion batteries. Sci. Rep. 2015, 5, 11557.

    Article  CAS  Google Scholar 

  122. Fei, L. F.; Li, X. G.; Bi, W. T.; Zhuo, Z. W.; Wei, W. F.; Sun, L.; Lu, W.; Wu, X. J.; Xie, K. Y.; Wu, C. Z. et al. Graphene/sulfur hybrid nanosheets from a space-confined “sauna” reaction for high-performance lithium-sulfur batteries. Adv. Mater. 2015, 27, 5936–5942.

    Article  CAS  Google Scholar 

  123. Liu, J. H.; Liu, X. W. Two-dimensional nanoarchitectures for lithium storage. Adv. Mater. 2012, 24, 4097–4111.

    Article  CAS  Google Scholar 

  124. Kundu, D.; Krumeich, F.; Nesper, R. Investigation of nano-fibrous selenium and its polypyrrole and graphene composite as cathode material for rechargeable Li-batteries. J. Power Sources 2013, 236, 112–117.

    Article  CAS  Google Scholar 

  125. Zhang, Z.; Zhang, Z. Y.; Zhang, K.; Yang, X.; Li, Q. Improvement of electrochemical performance of rechargeable lithium-selenium batteries by inserting a free-standing carbon interlayer. RSC Adv. 2014, 4, 15489–15492.

    Article  CAS  Google Scholar 

  126. Deng, Y. R.; Gong, L. L.; Ahmed, H.; Pan, Y. L.; Cheng, X. D.; Zhu, S. Y.; Zhang, H. P. N-doped interconnected carbon aerogels as an efficient SeS2 host for long life Na-SeS2 batteries. Nano Res. 2020, 13, 967–974.

    Article  CAS  Google Scholar 

  127. Wang, X. W.; Zhang, Z. A.; Qu, Y. H.; Wang, G. C.; Lai, Y. Q.; Li, J. Solution-based synthesis of multi-walled carbon nanotube/selenium composites for high performance lithium-selenium battery. J. Power Sources 2015, 287, 247–252.

    Article  CAS  Google Scholar 

  128. Liu, Y. X.; Si, L.; Du, Y. C.; Zhou, X. S.; Dai, Z. H.; Bao, J. C. Strongly bonded selenium/microporous carbon nanofibers composite as a high-performance cathode for lithium-selenium batteries. J. Phys. Chem. C 2015, 119, 27316–27321.

    Article  CAS  Google Scholar 

  129. Li, B.; Li, S. M.; Liu, J. H.; Wang, B.; Yang, S. B. Vertically aligned sulfur-graphene nanowalls on substrates for ultrafast lithium-sulfur batteries. Nano Lett. 2015, 15, 3073–3079.

    Article  CAS  Google Scholar 

  130. Zhou, X. S.; Zhu, X. S.; Liu, X.; Xu, Y.; Liu, Y. X.; Dai, Z. H.; Bao, J. C. Ultralong cycle life sodium-ion battery anodes using a graphene-templated carbon hybrid. J. Phys. Chem. C 2014, 118, 22426–22431.

    Article  CAS  Google Scholar 

  131. Zhao, X. S.; Yin, L. C.; Zhang, T.; Zhang, M.; Fang, Z. B.; Wang, C. Z.; Wei, Y. J.; Chen, G.; Zhang, D.; Sun, Z. H. et al. Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li-Se and Na-Se batteries. Nano Energy 2018, 49, 137–146.

    Article  Google Scholar 

  132. Wu, Y. P.; Jiang, C. Y.; Wan, C. R.; Fang, S. B.; Jiang, Y. Y. Nitrogen-containing polymeric carbon as anode material for lithium ion secondary battery. J. Appl. Polym. Sci. 2000, 77, 1735–1741.

    Article  CAS  Google Scholar 

  133. Zhao, X. S.; Yin, L. C.; Yang, Z. Z.; Chen, G.; Yue, H. J.; Zhang, D.; Sun, Z. H.; Li, F. An alkali metal-selenium battery with a wide temperature range and low self-discharge. J. Mater. Chem. A 2019, 7, 21774–21782.

    Article  CAS  Google Scholar 

  134. Kwon, H. T.; Park, C. M. Electrochemical characteristics of ZnSe and its nanostructured composite for rechargeable Li-ion batteries. J. Power Sources 2014, 251, 319–324.

    Article  CAS  Google Scholar 

  135. Wang, J. Z.; Lu, L.; Lotya, M.; Coleman, J. N.; Chou, S. L.; Liu, H. K.; Minett, A. I.; Chen, J. Development of MoS2-CNT composite thin film from layered MoS2 for lithium batteries. Adv. Energy Mater. 2013, 3, 798–805.

    Article  CAS  Google Scholar 

  136. Wang, R. H.; Xu, C. H.; Sun, J.; Liu, Y. Q.; Gao, L.; Yao, H. L.; Lin, C. C. Heat-induced formation of porous and free-standing MoS2/GS hybrid electrodes for binder-free and ultralong-life lithium ion batteries. Nano Energy 2014, 8, 183–195.

    Article  CAS  Google Scholar 

  137. Liu, Y.; Zhu, M. Q.; Chen, D. Sheet-like MoSe2/C composites with enhanced Li-ion storage properties. J. Mater. Chem. A 2015, 3, 11857–11862.

    Article  CAS  Google Scholar 

  138. Zeng, L. X.; Fang, Y. X.; Xu, L. H.; Zheng, C.; Yang, M. Q.; He, J. F.; Xue, H.; Qian, Q. R.; Wei, M. D.; Chen, Q. H. Rational design of few-layer MoSe2 confined within ZnSe-C hollow porous spheres for high-performance lithium-ion and sodium-ion batteries. Nanoscale 2019, 11, 6766–6775.

    Article  Google Scholar 

  139. Ali, Z.; Cao, C. B.; Li, J. L.; Wang, Y. L.; Cao, T.; Tanveer, M.; Tahir, M.; Idrees, F.; Butt, F. K. Effect of synthesis technique on electrochemical performance of bismuth selenide. J. Power Sources 2013, 229, 216–222.

    Article  CAS  Google Scholar 

  140. Han, G.; Chen, Z. G.; Ye, D. L.; Yang, L.; Wang, L. Z.; Drennan, J.; Zou, J. In-doped Bi2Se3 hierarchical nanostructures as anode materials for Li-ion batteries. J. Mater. Chem. A 2014, 2, 7109–7116.

    Article  CAS  Google Scholar 

  141. Yi, R.; Zai, J. T.; Dai, F.; Gordin, M. L.; Wang, D. H. Improved rate capability of Si-C composite anodes by boron doping for lithium-ion batteries. Electrochem. Commun. 2013, 36, 29–32.

    Article  CAS  Google Scholar 

  142. Wang, B.; Zhong, S. P.; Ge, Y. Q.; Wang, H. D.; Luo, X. L.; Zhang, H. Present advances and perspectives of broadband photo-detectors based on emerging 2D-Xenes beyond graphene. Nano Res. 2020, 13, 891–918.

    Article  CAS  Google Scholar 

  143. Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.

    Article  CAS  Google Scholar 

  144. Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B. et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649–1654.

    Article  CAS  Google Scholar 

  145. Tamalampudi, S. R.; Lu, Y. Y.; Kumar, U. R.; Sankar, R.; Liao, C. D.; Moorthy, B. K.; Cheng, C. H.; Chou, F. C.; Chen, Y. T. High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett. 2014, 14, 2800–2806.

    Article  CAS  Google Scholar 

  146. Vabbina, P.; Choudhary, N.; Chowdhury, A. A.; Sinha, R.; Karabiyik, M.; Das, S.; Choi, W.; Pala, N. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-Type MoS2/graphene schottky junction. ACS Appl. Mater. Interfaces 2015, 7, 15206–15213.

    Article  CAS  Google Scholar 

  147. Lou, Z.; Liang, Z. Z.; Shen, G. Z. Photodetectors based on two dimensional materials. J. Semicond. 2016, 37, 091001.

    Article  Google Scholar 

  148. Feng, W.; Gao, F.; Hue, Y. X.; Dai, M. J.; Li, H.; Wang, L. F.; Hu, P. A. High-performance and flexible photodetectors based on chemical vapor deposition grown two-dimensional In2Se3 nanosheets. Nanotechnology 2018, 29, 445205.

    Article  Google Scholar 

  149. Li, J. Y.; Ding, Y.; Zhang, D. W.; Zhou, P. Photodetectors based on two-dimensional materials and their van der Waals heterostructures. Acta Phy-Chim. Sin. 2019, 35, 1058–1077.

    Article  CAS  Google Scholar 

  150. Liu, T. D.; Tong, L.; Huang, X. Y.; Ye, L. Room-temperature infrared photodetectors with hybrid structure based on two-dimensional materials. Chin. Phys. B 2019, 28, 017302.

    Article  CAS  Google Scholar 

  151. Wang, F. K.; Zhang, Y.; Gao, Y.; Luo, P.; Su, J. W.; Han, W.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. 2D metal chalcogenides for IR photodetection. Small 2019, 15, e1901347.

    Article  Google Scholar 

  152. Konstantatos, G.; Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotech. 2010, 5, 391–400.

    Article  CAS  Google Scholar 

  153. Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotech. 2012, 7, 363–368.

    Article  CAS  Google Scholar 

  154. Dou, L. T.; Yang, Y. M.; You, J. B.; Hong, Z. R.; Chang, W. H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.

    Article  CAS  Google Scholar 

  155. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotech. 2014, 9, 780–793.

    Article  CAS  Google Scholar 

  156. Li, X. M.; Rui, M. C.; Song, J. Z.; Shen, Z. H.; Zeng, H. B. Carbon and graphene quantum dots for optoelectronic and energy devices: A review. Adv. Funct. Mater. 2015, 25, 4929–4947.

    Article  CAS  Google Scholar 

  157. Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

    Article  CAS  Google Scholar 

  158. Fang, X. S.; Bando, Y.; Gautam, U. K.; Zhai, T. Y.; Zeng, H. B.; Xu, X. J.; Liao, M. Y.; Golberg, D. ZnO and ZnS nanostructures: Ultraviolet-light emitters, lasers, and sensors. Crit. Rev. Solid State Mater. Sci. 2009, 34, 190–223.

    Article  CAS  Google Scholar 

  159. Zhai, T. Y.; Fang, X. S.; Liao, M. Y.; Xu, X. J.; Zeng, H. B.; Yoshio, B.; Golberg, D. A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors 2009, 9, 6504–6529.

    Article  CAS  Google Scholar 

  160. Weintraub, B.; Zhou, Z. Z.; Li, Y. H.; Deng, Y. L. Solution synthesis of one-dimensional ZnO nanomaterials and their applications. Nanoscale 2010, 2, 1573–1587.

    Article  CAS  Google Scholar 

  161. Cunningham, P. D.; Boercker, J. E.; Foos, E. E.; Lumb, M. P.; Smith, A. R.; Tischler, J. G.; Melinger, J. S. Enhanced multiple exciton generation in quasi-one-dimensional semiconductors. Nano Lett. 2011, 11, 3476–3481.

    Article  CAS  Google Scholar 

  162. Xie, C.; Yan, F. Flexible photodetectors based on novel functional materials. Small 2017, 13, 1701822.

    Article  Google Scholar 

  163. Yang, S. X.; Tongay, S.; Yue, Q.; Li, Y. T.; Li, B.; Lu, F. Y. Highperformance few-layer Mo-doped ReSe2 nanosheet photodetectors. Sci. Rep. 2014, 4, 5442.

    Article  CAS  Google Scholar 

  164. Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543–1560.

    Article  CAS  Google Scholar 

  165. Yu, W. Z.; Li, S. J.; Zhang, Y. P.; Ma, W. L.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. L. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 2017, 13, 1700268.

    Article  Google Scholar 

  166. Wang, X. T.; Cui, Y.; Li, T.; Lei, M.; Li, J. B.; Wei, Z. M. Recent advances in the functional 2D photonic and optoelectronic devices. Adv. Opt. Mater. 2019, 7, 1801274.

    Article  Google Scholar 

  167. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

    Article  CAS  Google Scholar 

  168. Lu, C. P.; Li, G. H.; Mao, J. H.; Wang, L. M.; Andrei, E. Y. Bandgap, mid-gap states, and gating effects in MoS2. Nano Lett. 2014, 14, 4628–4633.

    Article  CAS  Google Scholar 

  169. Yao, L. F.; Lou, X.; Sui, N.; Liu, Q. H.; Zhang, Y.; Chi, X. C.; Kang, Z. H.; Zhou, Q.; Zhang, H. Z.; Wang, Y. H. Studying of photo-excitation dynamics and photodetector based on MoSe2 nanosheet. Opt. Mater. 2019, 98, 109429.

    Article  CAS  Google Scholar 

  170. Nanot, S.; Cummings, A. W.; Pint, C. L.; Ikeuchi, A.; Akiho, T.; Sueoka, K.; Hauge, R. H.; Léonard, F.; Kono, J. Broadband, polarization-sensitive photodetector based on optically-thick films of macroscopically long, dense and aligned carbon nanotubes. Sci. Rep. 2013, 3, 1335.

    Article  Google Scholar 

  171. Zubair, A.; Tsentalovich, D. E.; Young, C. C.; Fujimura, N.; Wang, X.; He, X. W.; Gao, W. L.; Kawano, Y.; Pasquali, M.; Kono, J. Ultrabroadband, lightweight, flexible, and polarization sensitive photodetector based on carbon nanotube fibers. In Proceedings of 2015 Conference on Lasers and Electro-Optics, San Jose, USA, 2015.

  172. Chu, J. K.; Wang, Z. W.; Zhang, Y. J.; Liu, Z.; Wang, Y. L. Integrated blue-sensitive polarization-dependent photodetector. J. Micro/Nanolith. MEMS MOEMS 2013, 12, 033005.

    Article  Google Scholar 

  173. Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067–8077.

    Article  CAS  Google Scholar 

  174. Zhong, J. H.; Yu, J.; Cao, L. K.; Zeng, C.; Liu, Y. N.; Cong, C. X.; Liu, Z. W.; Liu, Y. P. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 2020, 13, 1780–1786.

    Article  CAS  Google Scholar 

  175. Antunez, P. D.; Buckley, J. J.; Brutchey, R. L. Tin and germanium monochalcogenide IV-VI semiconductor nanocrystals for use in solar cells. Nanoscale 2011, 3, 2399–2411.

    Article  CAS  Google Scholar 

  176. Mukherjee, B.; Cai, Y. Q.; Tan, H. R.; Feng, Y. P.; Tok, E. S.; Sow, C. H. NIR schottky photodetectors based on individual single-crystalline GeSe nanosheet. ACS Appl. Mater. Interfaces 2013, 5, 9594–9604.

    Article  CAS  Google Scholar 

  177. Zhou, X.; Hu, X. Z.; Zhou, S. S.; Zhang, Q.; Li, H. Q.; Zhai, T. Y. Optoelectronic materials: Ultrathin 2D GeSe2 rhombic flakes with high anisotropy realized by van der Waals epitaxy. Adv. Funct. Mater. 2017, 27, 1770279.

    Article  Google Scholar 

  178. Yao, J. D.; Zheng, Z. Q.; Yang, G. W. All-layered 2D optoelectronics: A high-performance UV-vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes. Adv. Funct. Mater. 2017, 27, 1701823.

    Article  Google Scholar 

  179. Devi, A.; Banotra, A.; Kumar, S.; Kapoor, A. K.; Padha, N. SnTexSe1-x alloy: An effective alternative to SnSe nano-crystalline thin films for optoelectronic applications. J. Electron. Mater. 2019, 48, 4335–4341.

    Article  CAS  Google Scholar 

  180. Hu, P. A.; Wen, Z. Z.; Wang, L. F.; Tan, P. H.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6, 5988–5994.

    Article  CAS  Google Scholar 

  181. Yang, Z. B.; Jie, W. J.; Mark, C. H.; Lin, S. H.; Lin, H. H.; Yang, X. F.; Yan, F.; Lau, S. P.; Hao, J. H. Wafer-scale synthesis of high-quality semiconducting two-dimensional layered InSe with broadband photoresponse. ACS Nano 2017, 11, 4225–4236.

    Article  CAS  Google Scholar 

  182. Yu, M. M.; Li, H.; Liu, H.; Qin, F. L.; Gao, F.; Hu, Y. X.; Dai, M. J.; Wang, L. F.; Feng, W.; Hu, P. A. Synthesis of two-dimensional alloy Ga0.84In0.16Se nanosheets for high-performance photodetector. ACS Appl. Mater. Interfaces 2018, 10, 43299–43304.

    Article  CAS  Google Scholar 

  183. Liu, F. C.; Zheng, S. J.; He, X. X.; Chaturvedi, A.; He, J. F.; Chow, W. L.; Mion, T. R.; Wang, X. L.; Zhou, J. D.; Fu, Q. D. et al. Photoresponse: Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 2016, 26, 1146.

    Article  Google Scholar 

  184. Lai, K. W. C.; Ning, X.; Chen, H. Z.; Fung, C. K. M.; Chen, L. L. Development of graphene-based optical detectors for infrared sensing applications. IEEE 2011, 398–401.

  185. Fan, Y. C.; Wei, Z. Y.; Zhang, Z. R.; Li, H. Q. Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators. Opt. Lett. 2013, 38, 5410–5413.

    Article  CAS  Google Scholar 

  186. Marini, A.; Silveiro, I.; de Abajo, J. G. Infrared spectroscopy with tunable graphene plasmons (Presentation Recording). In Proceedings of SPIE Volume 9544, Metamaterials, Metadevices, and Metasystems, San Diego, California, United States, 2015.

  187. Ying, X. X.; Pu, Y.; Li, Z.; Liu, Z. J.; Jiang, Y. D. Absorption enhancement of graphene salisbury screen in the mid-infrared regime. J. Opt. 2015, 44, 59–67.

    Article  Google Scholar 

  188. Thomas, L.; Sorathiya, V.; Patel, S. K.; Guo, T. J. Graphene-based tunable near-infrared absorber. Microw. Opt. Technol. Lett. 2019, 61, 1161–1165.

    Article  Google Scholar 

  189. Yin, J. B.; Tan, Z. J.; Hong, H.; Wu, J. X.; Yuan, H. T.; Liu, Y. J.; Chen, C.; Tan, C. W.; Yao, F. R.; Li, T. R. et al. Author Correction: Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat. Commun. 2019, 10, 3457.

    Article  Google Scholar 

  190. Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648–4655.

    Article  CAS  Google Scholar 

  191. Engel, M.; Steiner, M.; Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 2014, 14, 6414–6417.

    Article  CAS  Google Scholar 

  192. Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 2015, 9, 247–252.

    Article  CAS  Google Scholar 

  193. Xu, M.; Gu, Y. Q.; Peng, R. M.; Youngblood, N.; Li, M. Black phosphorus mid-infrared photodetectors. Appl. Phy. B 2017, 123, 130.

    Article  Google Scholar 

  194. Zhang, S. Q.; Liu, Y.; Shao, Y.; Fang, C. Z.; Han, G. Q.; Zhang, J. C.; Hao, Y. Simulation investigation of strained black phosphorus photodetector for middle infrared range. Opt. Express 2017, 25, 24705–24713.

    Article  CAS  Google Scholar 

  195. Hou, C. J.; Yang, L. J.; Li, B.; Zhang, Q. H.; Li, Y. F.; Yue, Q. Y.; Wang, Y.; Yang, Z.; Dong, L. X. Multilayer black phosphorus near- infrared photodetectors. Sensors 2018, 18, 1668.

    Article  Google Scholar 

  196. Venuthurumilli, P. K.; Ye, P. D.; Xu, X. F. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 2018, 12, 4861–4867.

    Article  CAS  Google Scholar 

  197. Liu, S. Y.; Tan, C. W.; He, D. W.; Wang, Y. S.; Peng, H. L.; Zhao, H. Optical properties and photocarrier dynamics of Bi2O2Se monolayer and nanoplates. Adv. Opt. Mater. 2020, 8, 1901567.

    Article  CAS  Google Scholar 

  198. Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100–103.

    Article  CAS  Google Scholar 

  199. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

    Article  CAS  Google Scholar 

  200. Ye, L.; Wang, P.; Luo, W. J.; Gong, F.; Liao, L.; Liu, T. D.; Tong, L.; Zang, J. F.; Xu, J. B.; Hu, W. D. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 2017, 37, 53–60.

    Article  CAS  Google Scholar 

  201. Yang, W. J.; Lee, C. W.; Kim, D. S.; Kim, H. S.; Kim, J. H.; Choi, H. Y.; Choi, Y. J.; Kim, J. H.; Park, K.; Cho, M. H. Tuning of topological dirac states via modification of van der Waals gap in strained ultrathin Bi2Se3 films. J. Phys. Chem. C 2018, 122, 23739–23748.

    Article  CAS  Google Scholar 

  202. Liu, S. Q.; Hong, Z. Y.; Qiao, H.; Hu, R.; Ma, Q.; Huang, K.; Li, H. X.; Qi, X. Two-dimensional Bi2Se3 nanosheet based flexible infrared photodetector with pencil-drawn graphite electrodes on paper. Nanoscale Adv. 2020, 2, 906–912.

    Article  CAS  Google Scholar 

  203. Zhang, Y.; Zhang, F.; Xu, Y. G.; Huang, W. C.; Wu, L. M.; Dong, Z. J.; Zhang, Y. P.; Dong, B. Q.; Zhang, X. W.; Zhang, H. Epitaxial growth of topological insulators on semiconductors (Bi2Se3/Te@Se) toward high-performance photodetectors. Small Methods 2019, 3, 1900349.

    Article  CAS  Google Scholar 

  204. Wu, X. Q.; Jiang, X. F.; Fan, T. J.; Zheng, Z. W.; Liu, Z. Y.; Chen, Y. B.; Cao, L. Q.; Xie, Z. J.; Zhang, D. W.; Zhao, J. Q. et al. Recent advances in photodynamic therapy based on emerging two-dimensional layered nanomaterials. Nano Res. 2020, 13, 1485–1508.

    Article  CAS  Google Scholar 

  205. Lin, Y. H.; Yang, C. Y.; Liou, J. H.; Yu, C. P.; Lin, G. R. Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser. Opt. Express 2013, 21, 16763–16776.

    Article  Google Scholar 

  206. Bao, Q. L.; Zhang, H.; Yang, J. X.; Wang, S.; Tong, D. Y.; Jose, R.; Ramakrishna, S.; Lim, C. T.; Loh, K. P. Graphene-polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater. 2010, 20, 782–791.

    Article  CAS  Google Scholar 

  207. Luo, Z. Q.; Zhou, M.; Weng, J.; Huang, G. M.; Xu, H. Y.; Ye, C. C.; Cai, Z. P. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser. Opt. Lett. 2010, 35, 3709–3711.

    Article  CAS  Google Scholar 

  208. Popa, D.; Sun, Z.; Torrisi, F.; Hasan, T.; Wang, F.; Ferrari, A. C. Sub 200 fs pulse generation from a graphene mode-locked fiber laser. Appl. Phys. Lett. 2010, 97, 203106.

    Article  Google Scholar 

  209. Sun, Z. P.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F. Q.; Bonaccorso, F.; Basko, D. M.; Ferrari, A. C. Graphene mode-locked ultrafast laser. ACS Nano 2010, 4, 803–810.

    Article  CAS  Google Scholar 

  210. Sobon, G.; Sotor, J.; Jagiello, J.; Kozinski, R.; Zdrojek, M.; Holdynski, M.; Paletko, P.; Boguslawski, J.; Lipinska, L.; Abramski, K. M. Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt. Express 2012, 20, 19463–19473.

    Article  CAS  Google Scholar 

  211. Jhon, Y. I.; Lee, J.; Seo, M.; Lee, J. H.; Jhon, Y. M. van der Waals layered tin selenide as highly nonlinear ultrafast saturable absorber. Adv. Opt. Mater. 2019, 7, 1801741.

    Article  Google Scholar 

  212. Liu, J. H.; Li, X. H.; Guo, Y. X.; Qyyum, A.; Shi, Z. J.; Feng, T. C.; Zhang, Y.; Jiang, C. X.; Liu, X. Harmonic mode-locking: SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small 2019, 15, 1970206.

    Article  Google Scholar 

  213. Xu, Y. J.; Yuan, J.; Fei, L. F.; Wang, X. L.; Bao, Q. L.; Wang, Y.; Zhang, K.; Zhang, Y. G. Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small 2016, 12, 5000–5007.

    Article  CAS  Google Scholar 

  214. Ge, Y. Q.; Chen, S.; Xu, Y. J.; He, Z. L.; Liang, Z. M.; Chen, Y. X.; Song, Y. F.; Fan, D. Y.; Zhang, K.; Zhang, H. Few-layer selenium-doped black phosphorus: Synthesis, nonlinear optical properties and ultrafast photonics applications. J. Mater. Chem. C 2017, 5, 6129–6135.

    Article  CAS  Google Scholar 

  215. Wang, K. P.; Zhang, X. Y.; Kislyakov, I. M.; Dong, N. N.; Zhang, S. F.; Wang, G. Z.; Fan, J. T.; Zou, X.; Du, J.; Leng, Y. X. et al. Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nat. Commun. 2019, 10, 3985.

    Article  Google Scholar 

  216. Guo, J.; Zhao, J. L.; Huang, D. Z.; Wang, Y. Z.; Zhang, F.; Ge, Y. Q.; Song, Y. F.; Xing, C. Y.; Fan, D. Y.; Zhang, H. Two-dimensional tellurium-polymer membrane for ultrafast photonics. Nanoscale 2019, 11, 6235–6242.

    Article  CAS  Google Scholar 

  217. Guo, J.; Zhang, Y.; Wang, Z. H.; Shu, Y. Q.; He, Z. W.; Zhang, F.; Gao, L. F.; Li, C.; Wang, C.; Song, Y. F. et al. Tellurium@Selenium core-shell hetero-junction: Facile synthesis, nonlinear optics, and ultrafast photonics applications towards mid-infrared regime. Appl. Mater. Today 2020, 20, 100657.

    Article  Google Scholar 

  218. Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama, Y.; Takahashi, H.; Kawano, T.; Katayama, Y.; Niidome, Y. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release 2006, 114, 343–347.

    Article  CAS  Google Scholar 

  219. Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007, 7, 1929–1934.

    Article  CAS  Google Scholar 

  220. Cheng, L.; Yang, K.; Li, Y. G.; Chen, J. H.; Wang, C.; Shao, M. W.; Lee, S. T.; Liu, Z. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Ang. Chem., Int. Ed. 2011, 50, 7385–7390.

    Article  CAS  Google Scholar 

  221. Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.

    Article  CAS  Google Scholar 

  222. Yang, K.; Wan, J. M.; Zhang, S.; Tian, B.; Zhang, Y. J.; Liu, Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 2012, 33, 2206–2214.

    Article  CAS  Google Scholar 

  223. Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/ photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886–1893.

    Article  CAS  Google Scholar 

  224. Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433–3440.

    Article  Google Scholar 

  225. Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.

    Article  Google Scholar 

  226. Deng, S. Q.; Zou, H. Y.; Lan, J.; Huang, C. Z. Aggregation-induced superior peroxidase-like activity of Cu2-xSe nanoparticles for melamine detection. Anal. Methods. 2016, 8, 7516–7521.

    Article  CAS  Google Scholar 

  227. Rabin, O.; Perez, J. M.; Grimm, J.; Wojtkiewicz, G.; Weissleder, R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 2006, 5, 118–122.

    Article  CAS  Google Scholar 

  228. Mao, F. X.; Wen, L.; Sun, C. X.; Zhang, S. H.; Wang, G. L.; Zeng, J. F.; Wang, Y.; Ma, J. M.; Gao, M. Y.; Li, Z. Ultrasmall biocompatible Bi2Se3 nanodots for multimodal imaging-guided synergistic radiophotothermal therapy against cancer. ACS Nano 2016, 10, 11145–11155.

    Article  CAS  Google Scholar 

  229. Xie, H. H.; Li, Z. B.; Sun, Z. B.; Shao, J. D.; Yu, X. F.; Guo, Z. N.; Wang, J. H.; Xiao, Q. L.; Wang, H. Y.; Wang, Q. Q. et al. Metabolizable ultrathin Bi2Se3 nanosheets in imaging-guided photothermal therapy. Small 2016, 12, 4136–4145.

    Article  CAS  Google Scholar 

  230. Ruleova, P.; Drasar, C.; Lostak, P.; Li, C. P.; Ballikaya, S.; Uher, C. Thermoelectric properties of Bi2O2Se. Mater. Chem. Phys. 2010, 119, 299–302.

    Article  CAS  Google Scholar 

  231. Wu, J. X.; Liu, Y. J.; Tan, Z. J.; Tan, C. W.; Yin, J. B.; Li, T. R.; Tu, T.; Peng, H. L. Chemical patterning of high-mobility semiconducting 2D Bi2O2Se crystals for integrated optoelectronic devices. Adv. Mater. 2017, 29, 1704060.

    Article  Google Scholar 

  232. Wu, J. X.; Yuan, H. T.; Meng, M. M.; Chen, C.; Sun, Y.; Chen, Z. Y.; Dang, W. H.; Tan, C. W.; Liu, Y. J. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530–534.

    Article  CAS  Google Scholar 

  233. Li, J.; Wang, Z. X.; Wen, Y.; Chu, J. W.; Yin, L.; Cheng, R. Q.; Lei, L.; He, P.; Jiang, C.; Feng, L. P. et al. High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv. Funct. Mater. 2018, 28, 1706437.

    Article  Google Scholar 

  234. Fu, Q. D.; Zhu, C.; Zhao, X. X.; Wang, X. L.; Chaturvedi, A.; Zhu, C.; Wang, X. W.; Zeng, Q. S.; Zhou, J. D.; Liu, F. C. et al. Ultrasensitive 2D Bi2O2Se phototransistors on silicon substrates. Adv. Mater. 2019, 31, 1804945.

    Article  Google Scholar 

  235. Quhe, R.; Liu, J. C.; Wu, J. X.; Yang, J.; Wang, Y. Y.; Li, Q. H.; Li, T. R.; Guo, Y.; Yang, J. B.; Peng, H. L. et al. High-performance sub-10 nm monolayer Bi2O2Se transistors. Nanoscale 2019, 11, 532–540.

    Article  CAS  Google Scholar 

  236. Xie, H. H.; Liu, M. Q.; You, B. H.; Luo, G. H.; Chen, Y.; Liu, B. L.; Jiang, Z. Y.; Chu, P. K.; Shao, J. D.; Yu, X. F. Biodegradable Bi2O2Se quantum dots for photoacoustic imaging-guided cancer photothermal therapy. Small 2020, 16, 1905208.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was partially supported by the Innovation Team Project of Department of Education of Guangdong Province (No. 2018KCXTD026), and the Postdoctoral Research Foundation of China (No. 2020M672786), and the National Natural Science Fund (Nos. 61875138, 61435010, and 61961136001), and the National Key Research and Development Program of China (No. 2018YFE0181500), and the Sichuan Province’s Science Fund for Distinguished Young Scholars (No. 2020JDJQ0022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaikai Xu or Han Zhang.

Additional information

Notes

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Zhang, H., Khan, K. et al. Two-dimensional selenium and its composites for device applications. Nano Res. 15, 104–122 (2022). https://doi.org/10.1007/s12274-021-3493-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3493-x

Keywords

Navigation