Skip to main content
Log in

Flexible multi-level quasi-volatile memory based on organic vertical transistor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Driven by important megatrends such as cloud computing, artificial intelligence, and the Internet of Things, as a device used to store programs and data in computing systems, memory is struggling to catch up with the explosive growth of data and bandwidth requirements in the system. However, the “storage wall” between non-volatile memory and volatile memory retards the further improvement of modern memory computing systems. Herein, a quasi-volatile transistor memory based on organic polymer/perovskite quantum dot blend was fabricated using the vertical transistor configuration. Contributing to vertical structure and appropriate doping ratio of blend film, the quasi-volatile memory device displayed 1,560 times longer data retention time (> 100 s) with respect to the dynamic random access memory and fast data programming speed (20 µs) in which was far more quickly than that of other organic non-volatile memories to fill the gap between volatile and non-volatile memories. Moreover, the device retention characteristics could be further promoted under the photoelectric synergistic stimulation, which also provided the possibility to reduce electric writing condition. Furthermore, the quasi-volatile memory device showed good electrical performance under bending conditions. This work provides a simple solution to fabricate multi-level quasi-volatile memory, which opens up a whole new avenue of “universal memory” and lays a solid foundation for low power and flexible random access memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson, J.; Ge, X. H.; Wu, H. C.; Irmer, R.; Jiang, H.; Fettweis, G.; Alamouti, S. 5G wireless communication systems: Prospects and challenges [Guest Editorial]. IEEE Commun. Mag. 2014, 52, 62–64.

    Article  Google Scholar 

  2. Thrall, J. H.; Li, X.; Li, Q. Z.; Cruz, C.; Do, S.; Dreyer, K.; Brink, J. Artificial intelligence and machine learning in radiology: Opportunities, challenges, pitfalls, and criteria for success. J. Am. Coll. Radiol. 2018, 15, 504–508.

    Article  Google Scholar 

  3. McKee, S. A.; Wisniewski, R. W. Memory wall. In Encyclopedia of Parallel Computing. Padua, D., Ed.; Springer: Boston, 2011; pp. 1110–1116.

    Google Scholar 

  4. Lee, J.; Pak, S.; Lee, Y. W.; Cho, Y.; Hong, J.; Giraud, P.; Shin, H. S.; Morris, S. M.; Sohn, J. I.; Cha, S. et al. Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat. Commun. 2017, 8, 14734.

    Article  CAS  Google Scholar 

  5. Seevinck, E.; List, F. J.; Lohstroh, J. Static-noise margin analysis of MOS SRAM cells. IEEE J. Solid-State Circuits 1987, 22, 748–754.

    Article  Google Scholar 

  6. Chun, K. C.; Jain, P.; Kim, T. H.; Kim, C. H. A 667 MHz logic-compatible embedded DRAM featuring an asymmetric 2T gain cell for high speed on-die caches. IEEE J. Solid-State Circuits 2012, 47, 547–559.

    Article  Google Scholar 

  7. Jung, T. S.; Choi, Y. J.; Suh, K. D.; Suh, B. H.; Kim, J. K.; Lim, Y. H.; Koh, Y. N.; Park, J. W.; Lee, K. J.; Park, J. H. et al. A 117-mm2 3.3-V only 128-Mb multilevel NAND flash memory for mass storage applications. IEEE J. Solid-State Circuits 1996, 31, 1575–1583.

    Article  Google Scholar 

  8. Zheng, C. Y.; Liao, Y.; Han, S. T.; Zhou, Y. Interface modification in three-terminal organic memory and synaptic device. Adv. Electron. Mater. 2020, 6, 2000641.

    Article  CAS  Google Scholar 

  9. Xu, T.; Guo, S. X.; Qi, W. H.; Li, S. Z.; Xu, M. L.; Wang, W. Organic transistor nonvolatile memory with three-level information storage and optical detection functions. ACS Appl. Mater. Interfaces 2020, 12, 21952–21960.

    Article  CAS  Google Scholar 

  10. Qu, T. Y.; Sun, Y.; Chen, M. L.; Liu, Z. B.; Zhu, Q. B.; Wang, B. W.; Zhao, T. Y.; Liu, C.; Tan, J.; Qiu, S. et al. A flexible carbon nanotube sen-memory device. Adv. Mater. 2020, 32, 1907288.

    Article  CAS  Google Scholar 

  11. Hu, D. B.; Wang, X. M.; Chen, H. P.; Guo, T. L. High performance flexible nonvolatile memory based on vertical organic thin film transistor. Adv. Funct. Mater. 2017, 27, 1703541.

    Article  Google Scholar 

  12. Wu, X. M.; Lan, S. Q.; Hu, D. B.; Chen, Q. Z.; Li, E. L.; Yan, Y. J.; Chen, H. P.; Guo, T. L. High performance flexible multilevel optical memory based on a vertical organic field effect transistor with ultrashort channel length. J. Mater. Chem. C 2019, 7, 9229–9240.

    Article  CAS  Google Scholar 

  13. Lan, S. Q.; Zhong, J. F.; Li, E. L.; Yan, Y. J.; Wu, X. M.; Chen, Q. Z.; Lin, W. K.; Chen, H. P.; Guo, T. L. High-performance nonvolatile organic photoelectronic transistor memory based on bulk heterojunction structure. ACS Appl. Mater. Interfaces 2020, 12, 31716–31724.

    Article  CAS  Google Scholar 

  14. Wulf, W. A.; McKee, S. A. Hitting the memory wall: Implications of the obvious. ACM SIGARCH Comput. Archit. News 1995, 23, 20–24.

    Article  Google Scholar 

  15. Ielmini, D.; Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 2018, 1, 333–343.

    Article  Google Scholar 

  16. Yoshida, E.; Tanaka, T. A capacitorless 1T-DRAM technology using gate-induced drain-leakage (GIDL) current for low-power and high-speed embedded memory. IEEE Trans. Electron Devices 2006, 53, 692–697.

    Article  CAS  Google Scholar 

  17. Zhou, Z. M.; Fossum, J. G.; Lu, Z. C. Physical insights on BJT-based 1T DRAM cells. IEEE Electron Device Lett. 2009, 30, 565–567.

    Article  CAS  Google Scholar 

  18. Kupke, S.; Knebel, S.; Schroeder, U.; Schmelzer, S.; Bottger, U.; Mikolajick, T. Reliability of SrRuO3/SrTiO3/SrRuO3 stacks for DRAM applications. IEEE Electron Device Lett. 2012, 33, 1699–1701.

    Article  CAS  Google Scholar 

  19. Lee, M. J.; Park, K. W. A mechanism for dependence of refresh time on data pattern in DRAM. IEEE Electron Device Lett. 2010, 31, 168–170.

    Article  Google Scholar 

  20. Gong, Y. H.; Chung, S. W. Exploiting refresh effect of DRAM read operations: A practical approach to low-power refresh. IEEE Trans. Comput. 2016, 65, 1507–1517.

    Article  Google Scholar 

  21. Liu, C. S.; Yan, X.; Song, X. F.; Ding, S. J.; Zhang, D. W.; Zhou, P. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 2018, 13, 404–410.

    Article  CAS  Google Scholar 

  22. Gundapaneni, S.; Ganguly, S.; Kottantharayil, A. Bulk planar junctionless transistor (BPJLT): An attractive device alternative for scaling. IEEE Electron Device Lett. 2011, 32, 261–263.

    Article  CAS  Google Scholar 

  23. Hou, X.; Chen, H. W.; Zhang, Z. H.; Wang, S. Y.; Zhou, P. 2D atomic crystals: A promising solution for next-generation data storage. Adv. Electron. Mater. 2019, 5, 1800944.

    Article  Google Scholar 

  24. Yang, J. J.; Strukov, D. B.; Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24.

    Article  CAS  Google Scholar 

  25. Zhang, P.; Yi, M. D.; Huang, L. Y.; Shi, W.; Zhu, J. T.; Huang, W. Improvement of memory characteristics for an organic charge trapping memory by introduction of PS tunneling layer. Org. Electron. 2020, 87, 105967.

    Article  CAS  Google Scholar 

  26. Zheng, C. Y.; Tong, T.; Hu, Y. M.; Gu, Y. M.; Wu, H. R.; Wu, D. Q.; Meng, H.; Yi, M. D.; Ma, J.; Gao, D. Q. et al. Charge-storage aromatic amino compounds for nonvolatile organic transistor memory devices. Small 2018, 14, 1800756.

    Article  Google Scholar 

  27. Yang, H. H.; Liu, Y. Q.; Wu, X. M.; Yan, Y. J.; Wang, X. M.; Lan, S. Q.; Zhang, G. C.; Chen, H. P.; Guo, T. L. High-performance all-inorganic perovskite-quantum-dot-based flexible organic phototransistor memory with architecture design. Adv. Electron. Mater. 2019, 5, 1900864.

    Article  CAS  Google Scholar 

  28. Hwang, S. K.; Bae, I.; Kim, R. H.; Park, C. Flexible non-volatile ferroelectric polymer memory with gate-controlled multilevel operation. Adv. Mater. 2012, 24, 5910–5914.

    Article  CAS  Google Scholar 

  29. Mukherjee, B.; Zulkefli, A.; Watanabe, K.; Taniguchi, T.; Wakayama, Y.; Nakaharai, S. Laser-assisted multilevel non-volatile memory device based on 2D van-der-waals few-layer-ReS2/h-BN/Graphene heterostructures. Adv. Funct. Mater. 2020, 30, 2001688.

    Article  CAS  Google Scholar 

  30. Yang, H. H.; Yan, Y. J.; Wu, X. M.; Liu, Y. Q.; Chen, Q. Z.; Zhang, G. C.; Chen, S. M.; Chen, H. P.; Guo, T. L. A multilevel vertical photonic memory transistor based on organic semiconductor/inorganic perovskite quantum dot blends. J. Mater. Chem. C 2020, 8, 2861–2869.

    Article  CAS  Google Scholar 

  31. Yoo, E. J.; Lyu, M.; Yun, J. H.; Kang, C. J.; Choi, Y. J.; Wang, L. Z. Resistive switching behavior in organic-inorganic hybrid CH3NH3PbI3−xClx perovskite for resistive random access memory devices. Adv. Mater. 2015, 27, 6170–6175.

    Article  CAS  Google Scholar 

  32. Zhou, F. C.; Zhou, Z.; Chen, J. W.; Choy, T. H.; Wang, J. L.; Zhang, N.; Lin, Z. Y.; Yu, S. M.; Kang, J. F.; Wong, H. S. P. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782.

    Article  CAS  Google Scholar 

  33. Li, E. L.; Lin, W. K.; Yan, Y. J.; Yang, H. H.; Wang, X. M.; Chen, Q. Z.; Lv, D. X.; Chen, G. X.; Chen, H. P.; Guo, T. L. Synaptic transistor capable of accelerated learning induced by temperature-facilitated modulation of synaptic plasticity. ACS Appl. Mater. Interfaces 2019, 11, 46008–46016.

    Article  CAS  Google Scholar 

  34. Yu, R. J.; Li, E. L.; Wu, X. M.; Yan, Y. J.; He, W. X.; He, L. H.; Chen, J. W.; Chen, H. P.; Guo, T. L. Electret-based organic synaptic transistor for neuromorphic computing. ACS Appl. Mater. Interfaces 2020, 12, 15446–15455.

    Article  CAS  Google Scholar 

  35. Mao, J. Y.; Zheng, Z.; Xiong, Z. Y.; Huang, P.; Ding, G. L.; Wang, R. P.; Wang, Z. P.; Yang, J. Q.; Zhou, Y.; Zhai, T. Y. et al. Lead-free monocrystalline perovskite resistive switching device for temporal information processing. Nano Energy 2020, 71, 104616.

    Article  CAS  Google Scholar 

  36. Ding, Y.; Liu, L.; Li, J. Y.; Cao, R. R.; Jiang, Y. G.; Liu, C. S.; Liu, Q.; Zhou, P. A semi-floating memory with 535% enhancement of refresh time by local field modulation. Adv. Funct. Mater. 2020, 30, 1908089.

    Article  CAS  Google Scholar 

  37. Kshirsagar, C. U.; Xu, W. C.; Su, Y.; Robbins, M. C.; Kim, C. H.; Koester, S. J. Dynamic memory cells using MoS2 field-effect transistors demonstrating femtoampere leakage currents. ACS Nano 2016, 10, 8457–8464.

    Article  CAS  Google Scholar 

  38. Yang, K.; Liu, H. X.; Wang, S. L.; Yu, W. L.; Han, T. Comprehensive performance quasi-non-volatile memory compatible with large-scale preparation by chemical vapor deposition. Nanomaterials 2020, 10, 1471.

    Article  CAS  Google Scholar 

  39. Chen, H. J.; Guo, Y. L.; Yu, G.; Zhao, Y.; Zhang, J.; Gao, D.; Liu, H. T.; Liu, Y. Q. Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv. Mater. 2012, 24, 4618–4622.

    Article  CAS  Google Scholar 

  40. Liu, D. J.; Lin, Q. Q.; Zang, Z. G.; Wang, M.; Wangyang, P. H.; Tang, X. S.; Zhou, M.; Hu, W. Flexible all-inorganic perovskite CsPbBr3 nonvolatile memory device. ACS Appl. Mater. Interfaces 2017, 9, 6171–6176.

    Article  CAS  Google Scholar 

  41. Chen, J. S.; Liu, D. Z.; Al-Marri, M. J.; Nuuttila, L.; Lehtivuori, H.; Zheng, K. B. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application. Sci. China Mater. 2016, 59, 719–727.

    Article  CAS  Google Scholar 

  42. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    Article  CAS  Google Scholar 

  43. Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew. Chem., Int. Ed. 2015, 54, 15424–15428.

    Article  CAS  Google Scholar 

  44. Cottingham, P.; Brutchey, R. L. On the crystal structure of colloidally prepared CsPbBr3 quantum dots. Chem. Commun. 2016, 52, 5246–5249.

    Article  CAS  Google Scholar 

  45. Zheng, C.; Bi, C. H.; Huang, F.; Binks, D.; Tian, J. J. Stable and strong emission CsPbBr3 quantum dots by surface engineering for high-performance optoelectronic films. ACS Appl. Mater. Interfaces 2019, 11, 25410–25416.

    Article  CAS  Google Scholar 

  46. Peng, B. Y.; Cao, K.; Lau, A. H. Y.; Chen, M.; Lu, Y.; Chan, P. K. L. Crystallized monolayer semiconductor for ohmic contact resistance, high intrinsic gain, and high current density. Adv. Mater. 2020, 32, 2002281.

    Article  CAS  Google Scholar 

  47. Yue, D. W.; Kim, C.; Lee, K. Y.; Yoo, W. J. Ohmic contact in 2D semiconductors via the formation of a benzyl viologen interlayer. Adv. Funct. Mater. 2019, 29, 1807338.

    Article  Google Scholar 

  48. Liao, M. Y.; Chiang, Y. C.; Chen, C. H.; Chen, W. C.; Chueh, C. C. Two-dimensional Cs2Pb(SCN)2Br2-Based photomemory devices showing a photoinduced recovery behavior and an unusual fully optically driven memory behavior. ACS Appl. Mater. Interfaces 2020, 12, 36398–36408.

    Article  CAS  Google Scholar 

  49. He, Y. L.; Nie, S.; Liu, R.; Jiang, S. S.; Shi, Y.; Wan, Q. Spatiotemporal information processing emulated by multiterminal neuro-transistor networks. Adv. Mater. 2019, 31, 1900903.

    Article  Google Scholar 

  50. Yi, M. D.; Xie, M.; Shao, Y. Q.; Li, W.; Ling, H. F.; Xie, L. H.; Yang, T.; Fan, Q. L.; Zhu, J. L.; Huang, W. Light programmable/erasable organic field-effect transistor ambipolar memory devices based on the pentacene/PVK active layer. J. Mater. Chem. C 2015, 3, 5220–5225.

    Article  CAS  Google Scholar 

  51. Pei, K.; Ren, X. C.; Zhou, Z. W.; Zhang, Z. C.; Ji, X. D.; Chan, P. K. L. A high-performance optical memory array based on inhomogeneity of organic semiconductors. Adv. Mater. 2018, 30, 1706647.

    Article  Google Scholar 

  52. Shi, N. E.; Liu, D.; Jin, X. L.; Wu, W. D.; Zhang, J.; Yi, M. D.; Xie, L. H.; Guo, F. N.; Yang, L.; Ou, C. J. et al. Floating-gate nanofibrous electret arrays for high performance nonvolatile organic transistor memory devices. Org. Electron. 2017, 49, 218–225.

    Article  CAS  Google Scholar 

  53. Wang, Y.; Yang, J.; Ye, W. B.; She, D. H.; Chen, J. R.; Lv, Z. Y.; Roy, V. A. L.; Li, H. L.; Zhou, K.; Yang, Q. et al. Near-infrared-irradiation-mediated synaptic behavior from tunable charge-trapping dynamics. Adv. Electron. Mater. 2020, 6, 1900765.

    Article  CAS  Google Scholar 

  54. Chiu, Y. C.; Sun, H. S.; Lee, W. Y.; Halila, S.; Borsali, R.; Chen, W. C. Oligosaccharide carbohydrate dielectrics toward high-performance non-volatile transistor memory devices. Adv. Mater. 2015, 27, 6257–6264.

    Article  CAS  Google Scholar 

  55. Zhu, J. Y.; Xie, Z. F.; Sun, X. K.; Zhang, S. Y.; Pan, G. C.; Zhu, Y. S.; Dong, B.; Bai, X.; Zhang, H. Z.; Song, H. W. Highly efficient and stable inorganic perovskite quantum dots by embedding into a polymer matrix. Chemnanomat 2019, 5, 346–351.

    Article  CAS  Google Scholar 

  56. Huang, H.; Susha, A. S.; Kershaw, S. V.; Hung, T. F.; Rogach, A. L. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature. Adv. Sci. 2015, 2, 1500194.

    Article  Google Scholar 

  57. Leng, M. Y.; Chen, Z. W.; Yang, Y.; Li, Z.; Zeng, K.; Li, K. H.; Niu, G. D.; He, Y. S.; Zhou, Q. C.; Tang, J. Lead-free, blue emitting bismuth halide perovskite quantum dots. Angew. Chem., Int. Ed. 2016, 55, 15012–15016.

    Article  CAS  Google Scholar 

  58. Lv, W. Z.; Li, L.; Xu, M. C.; Hong, J. X.; Tang, X. X.; Xu, L. G.; Wu, Y. H.; Zhu, R.; Chen, R. F.; Huang, W. Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv. Mater. 2019, 31, 1900682.

    Article  Google Scholar 

  59. Kim, T.; Lim, J. W.; Yun, S. J.; Lee, S. H.; Jung, K. H. Multi-level long-term memory resembling human memory based on photosensitive field-effect transistors with stable interfacial deep traps. Adv. Electron. Mater. 2020, 6, 1901044.

    Article  CAS  Google Scholar 

  60. Debucquoy, M.; Rockele, M.; Genoe, J.; Gelinck, G. H.; Heremans, P. Charge trapping in organic transistor memories: On the role of electrons and holes. Org. Electron. 2009, 10, 1252–1258.

    Article  CAS  Google Scholar 

  61. Kraft, U.; Zschieschang, U.; Ante, F.; Kälblein, D.; Kamella, C.; Amsharov, K.; Jansen, M.; Kern, K.; Weber, E.; Klauk, H. Fluoroalkylphosphonic acid self-assembled monolayer gate dielectrics for threshold-voltage control in low-voltage organic thin-film transistors. J. Mater. Chem. 2010, 20, 6416–6418.

    Article  CAS  Google Scholar 

  62. Li, Q. K.; Bi, S.; Asare-Yeboah, K.; Na, J.; Liu, Y.; Jiang, C. M.; Song, J. H. High performance vertical resonant photo-effect-transistor with an all-around OLED-gate for ultra-electromagnetic stability. ACS Nano 2019, 13, 8425–8432.

    Article  CAS  Google Scholar 

  63. Larrieu, G.; Han, X. L. Vertical nanowire array-based field effect transistors for ultimate scaling. Nanoscale 2013, 5, 2437–2441.

    Article  CAS  Google Scholar 

  64. Feng, G. D.; Jiang, J.; Zhao, Y. H.; Wang, S. T.; Liu, B.; Yin, K.; Niu, D. M.; Li, X. H.; Chen, Y. Q.; Duan, H. G. et al. A sub-10 nm vertical organic/inorganic hybrid transistor for pain-perceptual and sensitization-regulated nociceptor emulation. Adv. Mater. 2020, 32, 1906171.

    Article  CAS  Google Scholar 

  65. Gao, H. K.; Liu, J. Y.; Qin, Z. S.; Wang, T. Y.; Gao, C.; Dong, H. L.; Hu, W. P. High-performance amorphous organic semiconductor-based vertical field-effect transistors and light-emitting transistors. Nanoscale 2020, 12, 18371–18378.

    Article  CAS  Google Scholar 

  66. Huang, H. L.; Zhao, F. C.; Liu, L. G.; Zhang, F.; Wu, X. G.; Shi, L. J.; Zou, B. S.; Pei, Q. B.; Zhong, H. Z. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: An alternative route toward efficient light-emitting diodes. ACS Appl. Mater. Interfaces 2015, 7, 28128–28133.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the National Natural Science Foundation of China (No. 61974029) and Natural Science Foundation for Distinguished Young Scholars of Fujian Province (No. 2020J06012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huipeng Chen.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Yang, Q., He, L. et al. Flexible multi-level quasi-volatile memory based on organic vertical transistor. Nano Res. 15, 386–394 (2022). https://doi.org/10.1007/s12274-021-3489-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3489-6

Keywords

Navigation