Skip to main content
Log in

Large area van der Waals epitaxy of II–VI CdSe thin films for flexible optoelectronics and full-color imaging

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The demand for future semiconductor devices with enhanced performance and lower cost has driven the development of epitaxial growth of high quality, free-standing semiconductor thin film materials without the requirement of lattice matching to the substrate, as well as their transfer to other substrates and associated device processing technology. This work presents a study on the van der Waals epitaxy based molecular beam epitaxy of CdSe thin films on two-dimensional layered mica substrates, as well as related etch-free layer transfer technology of large area, free-standing layers and their application in flexible photodetectors for full-color imaging. The photoconductor detectors based on these flexible CdSe thin films demonstrate excellent device performance at room temperature in terms of responsivity (0.2 A·W−1) and detectivity (1.5 × 1012 Jones), leading to excellent full-color imaging quality in the visible spectral range. An etch-free and damage-free layer transfer method has been developed for transferring these CdSe thin films from mica to other substrate for further device processing and integration. These results demonstrate the feasibility of van der Waals epitaxy method for growing high quality, large area, and free-standing epitaxial layers without the requirement for lattice matching to substrate for applications in low-cost flexible and/or monolithic integrated optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kum, H.; Lee, D.; Kong, W.; Kim, H.; Park, Y.; Kim, Y.; Baek, Y.; Bae, S. H.; Lee, K.; Kim, J. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2019, 2, 439–450.

    Article  CAS  Google Scholar 

  2. Xiang, L.; Zeng, X. W.; Xia, F.; Jin, W. L.; Liu, Y. D.; Hu, Y. F. Recent advances in flexible and stretchable sensing systems: From the perspective of system integration. ACS Nano 2020, 14, 6449–6469.

    Article  CAS  Google Scholar 

  3. Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-On-Skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635.

    Article  CAS  Google Scholar 

  4. Mao, L. J.; Meng, Q. H.; Ahmad, A.; Wei, Z. X. Mechanical analyses and structural design requirements for flexible energy storage devices. Adv. Energy Mater. 2017, 7, 1700535.

    Article  Google Scholar 

  5. Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Neto, A. H. C.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190–194.

    Article  CAS  Google Scholar 

  6. Segev-Bar, M.; Haick, H. Flexible sensors based on nanoparticles. ACS Nano 2013, 7, 8366–8378.

    Article  CAS  Google Scholar 

  7. Kobayashi, Y.; Kumakura, K.; Akasaka, T.; Makimoto, T. Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 2012, 484, 223–227.

    Article  CAS  Google Scholar 

  8. Wang, H.; Liu, J. L.; Wu, X. X.; Zhang, S. Q.; Zhang, Z. K.; Pan, W. W.; Yuan, G.; Yuan, C. L.; Ren, Y. L.; Lei, W. Ultra-long high quality catalyst-free WO3 nanowires for fabricating high-performance visible photodetectors. Nanotechnology 2020, 31, 274003.

    Article  CAS  Google Scholar 

  9. Liu, X.; Long, Y. Z.; Liao, L.; Duan, X. F.; Fan, Z. Y. Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano 2012, 6, 1888–1900.

    Article  CAS  Google Scholar 

  10. Liu, J. L.; Li, X.; Wang, H.; Yuan, G.; Suvorova, A.; Gain, S.; Ren, Y. L.; Lei, W. Ultrathin high-quality SnTe nanoplates for fabricating flexible near-infrared photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 31810–31822.

    Article  CAS  Google Scholar 

  11. Lee, C. H.; Kim, D. R.; Zheng, X. L. Transfer printing methods for flexible thin film solar cells: Basic concepts and working principles. ACS Nano 2014, 8, 8746–8756.

    Article  CAS  Google Scholar 

  12. Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.

    Article  Google Scholar 

  13. Koma, A. van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 1999, 201–202, 236–241.

    Article  Google Scholar 

  14. Koma, A.; Sunouchi, K.; Miyajima, T. Fabrication of ultrathin heterostructures with van der Waals epitaxy. J. Vac. Sci. Technol. B: Microelectronics Process Phenom. 1985, 3, 724.

    Article  Google Scholar 

  15. Yen, M.; Bitla, Y.; Chu, Y. H. van der Waals heteroepitaxy on muscovite. Mater. Chem. Phys. 2019, 234, 185–195.

    Article  CAS  Google Scholar 

  16. Liu, J. L.; Wang, H.; Li, X.; Chen, H.; Zhang, Z. K.; Pan, W. W.; Luo, G. Q.; Yuan, C. L.; Ren, Y. L.; Lei, W. Ultrasensitive flexible near-infrared photodetectors based on van der waals Bi2Te3 nanoplates. Appl. Surf. Sci. 2019, 484, 542–550.

    Article  CAS  Google Scholar 

  17. Lian, Q.; Zhu, X. T.; Wang, X. D.; Bai, W.; Yang, J.; Zhang, Y. Y.; Qi, R. J.; Huang, R.; Hu, W. D.; Tang, X. D. et al. Ultrahigh-detectivity photodetectors with van der Waals epitaxial CdTe single-crystalline films. Small 2019, 15, e1900236.

    Article  Google Scholar 

  18. Wang, J. L.; Fang, H. H.; Wang, X. D.; Chen, X. S.; Lu, W.; Hu, W. D. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet—Visible to infrared. Small 2017, 13, 1700894.

    Article  Google Scholar 

  19. Mohanty, D.; Lu, Z. H.; Sun, X.; Xiang, Y.; Wang, Y. P.; Ghoshal, D.; Shi, J.; Gao, L.; Shi, S. F.; Washington, M. et al. Metalorganic vapor phase epitaxy of large size CdTe grains on mica through chemical and van der Waals interactions. Phys. Rev. Mater. 2018, 2, 113402.

    Article  CAS  Google Scholar 

  20. Yang, Y. B.; Seewald, L.; Mohanty, D.; Wang, Y.; Zhang, L. H.; Kisslinger, K.; Xie, W. Y.; Shi, J.; Bhat, I.; Zhang, S. B. et al. Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate. Appl. Surf. Sci. 2017, 413, 219–232.

    Article  CAS  Google Scholar 

  21. Cheng, R. Q.; Wen, Y.; Yin, L.; Wang, F. M.; Wang, F.; Liu, K. L.; Shifa, T. A.; Li, J.; Jiang, C.; Wang, Z. X. et al. Ultrathin single-crystalline CdTe nanosheets realized via van der Waals epitaxy. Adv. Mater. 2017, 29, 1703122.

    Article  Google Scholar 

  22. Wu, F.; Li, Q.; Wang, P.; Xia, H.; Wang, Z.; Wang, Y.; Luo, M.; Chen, L.; Chen, F. S.; Miao, J. H. et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat. Commun. 2019, 10, 4663.

    Article  Google Scholar 

  23. Zhu, D. D.; Xia, J.; Wang, L.; Li, X. Z.; Tian, L. F.; Meng, X. M. van der Waals epitaxy and photoresponse of two-dimensional CdSe plates. Nanoscale 2016, 8, 11375–11379.

    Article  CAS  Google Scholar 

  24. Lei, W.; Antoszewski, J.; Faraone, L. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Appl. Phys. Rev. 2015, 2, 041303.

    Article  Google Scholar 

  25. Lei, W.; Ren, Y. L.; Madni, I.; Umana-Membreno, G. A.; Faraone, L. MBE growth of high quality HgCdSe on GaSb substrates. Infrared Phys. Technol. 2018, 92, 197–202.

    Article  CAS  Google Scholar 

  26. Dumas, D.; Fendler, M.; Baier, N.; Primot, J.; Le Coarer, E. Curved focal plane detector array for wide field cameras. Appl. Opt. 2012, 51, 5419–5424.

    Article  Google Scholar 

  27. Bhan, R. K.; Dhar, V. Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization. Opto-Electron. Rev. 2019, 27, 174–193.

    Article  Google Scholar 

  28. Guenter, B.; Joshi, N.; Stoakley, R.; Keefe, A.; Geary, K.; Freeman, R.; Hundley, J.; Patterson, P.; Hammon, D.; Herrera, G. et al. Highly curved image sensors: A practical approach for improved optical performance. Opt. Express 2017, 25, 13010–13023.

    Article  CAS  Google Scholar 

  29. Wen, X. X.; Lu, Z. H.; Sun, X.; Xiang, Y.; Chen, Z. Z.; Shi, J.; Bhat, I.; Wang, G. C.; Washington, M.; Lu, T. M. Epitaxial CdTe thin films on mica by vapor transport deposition for flexible solar cells. ACS Appl. Energy Mater. 2020, 3, 4589–4599.

    Article  CAS  Google Scholar 

  30. Mohanty, D.; Lu, Z. H.; Sun, X.; Xiang, Y.; Gao, L.; Shi, J.; Zhang, L. H.; Kisslinger, K.; Washington, M. A.; Wang, G. C. et al. Growth of epitaxial CdTe thin films on amorphous substrates using single crystal graphene buffer. Carbon 2019, 144, 519–524.

    Article  CAS  Google Scholar 

  31. Lei, W.; Gu, R. J.; Antoszewski, J.; Dell, J.; Neusser, G.; Sieger, M.; Mizaikoff, B.; Faraone, L. MBE growth of mid-wave infrared HgCdTe layers on GaSb alternative substrates. J. Electron. Mater. 2015, 44, 3180–3187.

    Article  CAS  Google Scholar 

  32. Lei, W.; Gu, R. J.; Antoszewski, J.; Dell, J.; Faraone, L. GaSb: A new alternative substrate for epitaxial growth of HgCdTe. J. Electron. Mater. 2014, 43, 2788–2794.

    Article  CAS  Google Scholar 

  33. Pan, W. W.; Gu, R. J.; Zhang, Z. K.; Liu, J. L.; Lei, W.; Faraone, L. Strained CdZnTe/CdTe superlattices as threading dislocation filters in lattice mismatched MBE growth of CdTe on GaSb. J. Electron. Mater. 2020, 49, 6983–6989.

    Article  CAS  Google Scholar 

  34. Soni, U.; Arora, V.; Sapra, S. Wurtzite or zinc blende? Surface decides the crystal structure of nanocrystals. CrystEngComm 2013, 15, 5458–5463.

    Article  CAS  Google Scholar 

  35. McCauley, J. W.; Newnham, R. E.; Gibbs, G. V. Crystal structure analysis of synthetic fluorophlogopite. Am. Mineral. 1973, 58, 249–254.

    CAS  Google Scholar 

  36. Samarth, N.; Luo, H.; Furdyna, J. K.; Qadri, S. B.; Lee, Y. R.; Ramdas, A. K.; Otsuka, N. Growth of cubic (zinc blende) CdSe by molecular beam epitaxy. Appl. Phys. Lett. 1989, 54, 2680–2682.

    Article  CAS  Google Scholar 

  37. Zardo, I.; Conesa-Boj, S.; Peiro, F.; Morante, J. R.; Arbiol, J.; Uccelli, E.; Abstreiter, G.; Morral, A. F. I. Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects. Phys. Rev. B 2009, 80, 245324.

    Article  Google Scholar 

  38. Poplawsky, J. D.; Guo, W.; Paudel, N.; Ng, A.; More, K.; Leonard, D.; Yan, Y. F. Structural and compositional dependence of the CdTexSe1−x alloy layer photoactivity in CdTe-based solar cells. Nat. Commun. 2016, 7, 12537.

    Article  CAS  Google Scholar 

  39. Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

    Article  CAS  Google Scholar 

  40. Ninomiya, S.; Adachi, S. Optical properties of cubic and hexagonal CdSe. J. Appl. Phys. 1995, 78, 4681–4689.

    Article  CAS  Google Scholar 

  41. Mohanty, D.; Sun, X.; Lu, Z. H.; Washington, M.; Wang, G. C.; Lu, T. M.; Bhat, I. B. Analyses of orientational superlattice domains in epitaxial ZnTe thin films grown on graphene and mica. J. Appl. Phys. 2018, 124, 175301.

    Article  Google Scholar 

  42. Park, Y.; Cich, M. J.; Zhao, R.; Specht, P.; Weber, E. R.; Stach, E.; Nozaki, S. Analysis of twin defects in GaAs(111)B molecular beam epitaxy growth. J. Vac. Sci. Technol. B: Microelectronics Nanometer Struct. Process., Meas., Phenom. 2000, 18, 1566–1571.

    Article  CAS  Google Scholar 

  43. Cullis, A. G.; Chew, N. G.; Hutchison, J. L. Formation and elimination of surface ion milling defects in cadmium telluride, zinc sulphide and zinc selenide. Ultramicroscopy 1985, 17, 203–211.

    Article  CAS  Google Scholar 

  44. Pelati, D.; Patriarche, G.; Mauguin, O.; Largeau, L.; Travers, L.; Brisset, F.; Glas, F.; Oehler, F. GaAs (111) epilayers grown by MBE on Ge (111): Twin reduction and polarity. J. Cryst. Growth 2019, 519, 84–90.

    Article  CAS  Google Scholar 

  45. Zhang, S. X.; Zhang, J.; Qiu, X. F.; Wu, Y.; Chen, P. P. Characterization of the microstructures and optical properties of CdTe(001) and (111) thin films grown on GaAs(001) substrates by molecular beam epitaxy. J. Cryst. Growth 2020, 546, 125756.

    Article  CAS  Google Scholar 

  46. Huerta, J.; López, M.; Zelaya-Angel, O. Phase stability during molecular beam epitaxial growth of CdTe on InSb(111) substrates. J. Vac. Sci. Technol. B: Microelectronics Nanometer Struct. Process., Meas., Phenom. 2000, 18, 1716–1719.

    Article  CAS  Google Scholar 

  47. Fan, D. J.; Lee, K.; Forrest, S. R. Flexible thin-film InGaAs photodiode focal plane array. ACS Photonics 2016, 3, 670–676.

    Article  CAS  Google Scholar 

  48. Petritz, R. L. Theory of photoconductivity in semiconductor films. Phys. Rev. 1956, 104, 1508–1516.

    Article  CAS  Google Scholar 

  49. Daraselia, M.; Carmody, M.; Edwall, D. D.; Tiwald, T. E. Improved model for the analysis of FTIR transmission spectra from multilayer HgCdTe structures. J. Electron. Mater. 2005, 34, 762–767.

    Article  CAS  Google Scholar 

  50. Adachi, S. Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information; Springer: New York, 1999.

    Book  Google Scholar 

  51. Wagner, R. G.; Breitweiser, G. C. Interface-related electrical properties of cadmium selenide films. Solid-State Electron. 1969, 12, 229–238.

    Article  Google Scholar 

  52. Türe, I. E.; Russell, G. J.; Woods, J. Photoconductivity, structure and defect levels in CdSe crystals. J. Cryst. Growth 1982, 59, 223–228.

    Article  Google Scholar 

  53. Ma, D. L.; Shi, J. P.; Ji, Q. Q.; Chen, K.; Yin, J. B.; Lin, Y. W.; Zhang, Y.; Liu, M. X.; Feng, Q. L.; Song, X. J. et al. A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Res. 2015, 8, 3662–3672.

    Article  CAS  Google Scholar 

  54. Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, D.; Zheng, W. S.; Li, H.; Shen, Z. X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281–286.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (Nos. FT130101708, DP200103188, DP170104562, LP170100088, and LE170100233) and a Research Collaboration Award from the University of Western Australia. Facilities used in this work are supported by the WA node of the Australian National Fabrication Facility (ANFF), and the Microscopy Australia Facility at the Centre for Microscopy, Characterization and Analysis (CMCA) at UWA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Lei.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Liu, J., Zhang, Z. et al. Large area van der Waals epitaxy of II–VI CdSe thin films for flexible optoelectronics and full-color imaging. Nano Res. 15, 368–376 (2022). https://doi.org/10.1007/s12274-021-3485-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3485-x

Keywords

Navigation