Skip to main content
Log in

Fast electrochemical activation of the broadband saturable absorption of tungsten oxide nanoporous film

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The on-demand modulation of defects in materials for the effective modulation of optical nonlinearity is desirable, while it remains a great challenge. In this work, we demonstrate that electrochemical activation is a facile and convenient approach to modulating the broadband third-order nonlinear absorption of nanoporous tungsten oxide (WO3−x) thin film. The film does not exhibit optical nonlinearity at the initial state, while shows a distinct saturable absorption under an applied voltage of −2.5 V with the excitation of 515, 800, and 1,030 nm laser. The nonlinear absorption coefficient (βeff) is −766.38 ± 6.67 cm·GW−1 for 1,030 nm laser, −624.24 ± 17.15 cm·GW−1 for 800 nm laser, and −120.70 ± 11.49 cm·GW−1 for 515 nm laser, and the performance is competitive among inorganic saturable absorbers. The activation is accomplished in 2 min. The performance enhancement is ascribed to the formation of abundant in-gap defect states because of the reduction of the tungsten atoms, and a Pauli-blocking effect occurs during the excitation of in-gap defect states. The small feature size of WO3−x (∼ 12 nm) enables the effective and fast introduction and removal of the defects in porous film, and accordingly the fast and broadband modulation of optical nonlinearity. Our results suggest a controllable, effective, and convenient approach to tuning the nonlinear absorption of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garmire, E. Nonlinear optics in daily life. Opt. Express 2013, 21, 30532–30544.

    Article  Google Scholar 

  2. Fermann, M. E.; Hartl, I. Ultrafast fiber laser technology. IEEE J. Select. Top. Quantum Electron. 2009, 15, 191–206.

    Article  CAS  Google Scholar 

  3. Cotter, D.; Manning, R. J.; Blow, K. J.; Ellis, A. D.; Kelly, A. E.; Nesset, D.; Phillips, D. I.; Poustie, A. J.; Rogers, D. C. Nonlinear optics for high-speed digital information processing. Science 1999, 286, 1523–1528.

    Article  CAS  Google Scholar 

  4. Grinblat, G.; Berté, R.; Nielsen, M. P.; Li, Y.; Oulton, R. F.; Maier, S. A. Sub-20 fs all-optical switching in a single Au-clad Si nanodisk. Nano Lett. 2018, 18, 7896–7900.

    Article  CAS  Google Scholar 

  5. Glezer, E. N.; Milosavljevic, M.; Huang, L.; Finlay, R. J.; Her, T. H.; Callan, J. P.; Mazur, E. Three-dimensional optical storage inside transparent materials. Opt. Lett. 1996, 21, 2023–2025.

    Article  CAS  Google Scholar 

  6. Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford University Press: New York, 1995.

    Google Scholar 

  7. Zipfel, W. R.; Williams, R. M.; Webb, W. W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol. 2003, 21, 1369–1377.

    Article  CAS  Google Scholar 

  8. Leach, J.; Jack, B.; Romero, J.; Jha, A. K.; Yao, A. M.; Franke-Arnold, S.; Ireland, D. G.; Boyd, R. W.; Barnett, S. M.; Padgett, M. J. Quantum correlations in optical angle-orbital angular momentum variables. Science 2010, 329, 662–665.

    Article  CAS  Google Scholar 

  9. Dini, D.; Calvete, M. J. F.; Hanack, M. Nonlinear optical materials for the smart filtering of optical radiation. Chem. Rev. 2016, 116, 13043–13233.

    Article  CAS  Google Scholar 

  10. Mao, D.; Wang, Y. D.; Ma, C. J.; Han, L.; Jiang, B. Q.; Gan, X. T.; Hua, S. J.; Zhang, W. D.; Mei, T.; Zhao, J. L. WS2 mode-locked ultrafast fiber laser. Sci. Rep. 2015, 5, 7965.

    Article  CAS  Google Scholar 

  11. Zhang, S. F.; Dong, N. N.; McEvoy, N.; O’Brien, M.; Winters, S.; Berner, N. C.; Yim, C. Li, Y. X.; Zhang, X. Y.; Chen, Z. H.; Zhang, L. et al. Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films. ACS Nano 2015, 9, 7142–7150.

    Article  CAS  Google Scholar 

  12. Chen, B. H.; Zhang, X. Y.; Wu, K.; Wang, H.; Wang, J.; Chen, J. P. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Opt. Express 2015, 23, 26723–26737.

    Article  CAS  Google Scholar 

  13. Koo, J.; Jhon, Y. I.; Park, J.; Lee, J.; Jhon, Y. M.; Lee, J. H. Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking. Adv. Funct. Mater. 2016, 26, 7454–7461.

    Article  CAS  Google Scholar 

  14. Quan, C. J.; He, M. M.; He, C.; Huang, Y. Y.; Zhu, L. P.; Yao, Z. H.; Xu, X.; Lu, C. H.; Xu, X. L. Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity. Appl. Surf. Sci. 2018, 457, 115–120.

    Article  CAS  Google Scholar 

  15. Zhang, X. Y.; Zhang, S. F.; Xie, Y. F.; Huang, J. W.; Wang, L.; Cui, Y.; Wang, J. Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering. Nanoscale 2018, 10, 17924–17932.

    Article  CAS  Google Scholar 

  16. Ge, Y. Q.; Zhu, Z. F.; Xu, Y. H.; Chen, Y. X.; Chen, S.; Liang, Z. M.; Song, Y. F.; Zou, Y. S.; Zeng, H. B.; Xu, S. X. et al. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater. 2018, 6, 1701166.

    Article  Google Scholar 

  17. Sun, Z. P.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F. Q.; Bonaccorso, F.; Basko, D. M.; Ferrari, A. C. Graphene mode-locked ultrafast laser. ACS Nano 2010, 4, 803–810.

    Article  CAS  Google Scholar 

  18. Wu, L. M.; Dong, Y. Z.; Zhao, J. L.; Ma, D. T.; Huang, W. C.; Zhang, Y.; Wang, Y. Z.; Jiang, X. T.; Xiang, Y. J.; Li, J. Q. et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv. Mater. 2019, 31, 1807981.

    Article  Google Scholar 

  19. Jiang, X. T.; Kuklin, A. V.; Baev, A.; Ge, Y. Q.; Ågren, H.; Zhang, H.; Prasad, P. N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1–58.

    Article  CAS  Google Scholar 

  20. Lu, L.; Tang, X.; Cao, R.; Wu, L. M.; Li, Z. J.; Jing, G. H.; Dong, B. Q.; Lu, S. B.; Li, Y.; Xiang, Y. J. et al. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: A promising optical Kerr media with enhanced stability. Adv. Opt. Mater. 2017, 5, 1700301.

    Article  Google Scholar 

  21. Chung, S. J.; Rumi, M.; Alain, V.; Barlow, S.; Perry, J. W.; Marder, S. R. Strong, low-energy two-photon absorption in extended amine-terminated cyano-substituted phenylenevinylene oligomers. J. Am. Chem. Soc. 2005, 127, 10844–10845.

    Article  CAS  Google Scholar 

  22. Senge, M. O.; Fazekas, M.; Notaras, E. G. A.; Blau, W. J.; Zawadzka, M.; Locos, O. B.; Ni Mhuircheartaigh, E. M. Nonlinear optical properties of porphyrins. Adv. Mater. 2007, 19, 2737–2774.

    Article  CAS  Google Scholar 

  23. Powell, C. E.; Humphrey, M. G. Nonlinear optical properties of transition metal acetylides and their derivatives. Coord. Chem. Rev. 2004, 248, 725–756.

    Article  CAS  Google Scholar 

  24. Girisun, T. C. S.; Dhanuskodi, S.; Vinitha, G. χ(3) measurement and optical limiting properties of metal complexes of thiourea using Z-scan. Mater. Chem. Phys. 2011, 129, 9–14.

    Article  CAS  Google Scholar 

  25. Zhou, K. G.; Zhao, M.; Chang, M. J.; Wang, Q.; Wu, X. Z.; Song, Y. L.; Zhang, H. L. Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets. Small 2015, 11, 694–701.

    Article  CAS  Google Scholar 

  26. Lafetá, L.; Cadore, A. R.; Mendes-de-Sa, T. G.; Watanabe, K.; Taniguchi, T.; Campos, L. C.; Jorio, A.; Malard, L. M. Anomalous nonlinear optical response of graphene near phonon resonances. Nano Lett. 2017, 17, 3447–3451.

    Article  Google Scholar 

  27. Maji, T. K.; Aswin, J. R.; Mukherjee, S.; Alexander, R.; Mondal, A.; Das, S.; Sharma, R. K.; Chakraborty, N. K.; Dasgupta, K.; Sharma, A. M. R. et al. Combinatorial large-Area MoS2/anatase-TiO2 interface: A pathway to emergent optical and optoelectronic functionalities. ACS Appl. Mater. Interfaces 2020, 12, 44345–44359.

    Article  CAS  Google Scholar 

  28. Wang, A. J.; Ye, J.; Humphrey, M. G.; Zhang, C. Graphene and carbon-nanotube nanohybrids covalently functionalized by porphyrins and phthalocyanines for optoelectronic properties. Adv. Mater. 2018, 30, 1705704.

    Article  Google Scholar 

  29. Xu, Y. F.; Liu, Z. B.; Zhang, X. L.; Wang, Y.; Tian, J. G.; Huang, Y.; Ma, Y. F.; Zhang, X. Y.; Chen, Y. S. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 2009, 21, 1275–1279.

    Article  CAS  Google Scholar 

  30. Kuis, R.; Gougousi, T.; Basaldua, I.; Burkins, P.; Kropp, J. A.; Johnson, A. M. Engineering of large third-order nonlinearities in atomic layer deposition grown nitrogen-enriched TiO2. ACS Photonics 2019, 6, 2966–2973.

    Article  CAS  Google Scholar 

  31. Wei, R. F.; Qiao, T.; Tian, X. L.; Zhang, H.; He, X.; Hu, Z. L.; Chen, Q. Q.; Qiu, J. R. Enhanced nonlinear optical response of Se-doped MoS2 nanosheets for passively Q-switched fiber laser application. Nanotechnology 2017, 28, 215206.

    Article  Google Scholar 

  32. Wang, S. X.; Yu, H. H.; Zhang, H. J.; Wang, A. Z.; Zhao, M. W.; Chen, Y. X.; Mei, L. M.; Wang, J. Y. Broadband few-layer MoS2 saturable absorbers. Adv. Mater. 2014, 26, 3538–3544.

    Article  CAS  Google Scholar 

  33. Anand, B.; Krishnan, S. R.; Podila, R.; Sai, S. S. S.; Rao, A. M.; Philip, R. The role of defects in the nonlinear optical absorption behavior of carbon and ZnO nanostructures. Phys. Chem. Chem. Phys. 2014, 16, 8168–8177.

    Article  CAS  Google Scholar 

  34. Stehr, J. E.; Chen, S. L.; Reddy, N. K.; Tu, C. W.; Chen, W. M.; Buyanova, I. A. Turning ZnO into an efficient energy upconversion material by defect engineering. Adv. Funct. Mater. 2014, 24, 3760–3764.

    Article  CAS  Google Scholar 

  35. Ou, J. Z.; Balendhran, S.; Field, M. R.; McCulloch, D. G.; Zoolfakar, A. S.; Rani, R. A.; Zhuiykov, S.; O’Mullane, A. P.; Kalantar-Zadeh, K. The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. Nanoscale 2012, 4, 5980–5988.

    Article  CAS  Google Scholar 

  36. Lee, S. H.; Seong, M. J.; Cheong, H. M.; Ozkan, E.; Tracy, E. C.; Deb, S. K. Effect of crystallinity on electrochromic mechanism of LixWO3 thin films. Solid State Ion. 2003, 156, 447–452.

    Article  CAS  Google Scholar 

  37. Thi, M. P.; Velasco, G. Raman study of WO3 thin films. Solid State Ion. 1984, 14, 217–220.

    Article  Google Scholar 

  38. Garcia-Sanchez, R. F.; Ahmido, T.; Casimir, D.; Baliga, S.; Misra, P. Thermal effects associated with the Raman spectroscopy of WO3 gas-sensor materials. J. Phys. Chem. A 2013, 117, 13825–13831.

    Article  CAS  Google Scholar 

  39. Luo, J. Y.; Deng, S. Z.; Tao, Y. T.; Zhao, F. L.; Zhu, L. F.; Gong, L.; Chen, J.; Xu, N. S. Evidence of localized water molecules and their role in the gasochromic effect of WO3 nanowire films. J. Phys. Chem. C 2009, 113, 15877–15881.

    Article  CAS  Google Scholar 

  40. Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46.

    Article  CAS  Google Scholar 

  41. Vemuri, R. S.; Engelhard, M. H.; Ramana, C. V. Correlation between surface chemistry, density, and band gap in nanocrystalline WO3 thin films. ACS Appl. Mater. Interfaces 2012, 4, 1371–1377.

    Article  CAS  Google Scholar 

  42. Cong, S.; Tian, Y. Y.; Li, Q. W.; Zhao, Z. G.; Geng, F. X. Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 2014, 26, 4260–4267.

    Article  CAS  Google Scholar 

  43. Song, Y. Y.; Gao, Z. D.; Wang, J. H.; Xia, X. H.; Lynch, R. Multistage coloring electrochromic device based on TiO2 nanotube arrays modified with WO3 nanoparticles. Adv. Funct. Mater. 2011, 21, 1941–1946.

    Article  CAS  Google Scholar 

  44. Yang, C. S.; Shang, D. S.; Liu, N.; Shi, G.; Shen, X.; Yu, R. C.; Li, Y. Q.; Sun, Y. A Synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 2017, 29, 1700906.

    Article  Google Scholar 

  45. Ou, J. Z.; Campbell, J. L.; Yao, D.; Wlodarski, W.; Kalantar-Zadeh, K. In situ Raman spectroscopy of H2 gas interaction with layered MoO3. J. Phys. Chem. C 2011, 115, 10757–10763.

    Article  CAS  Google Scholar 

  46. Lee, S. H.; Cheong, H. M.; Tracy, C. E.; Mascarenhas, A.; Czanderna, A. W.; Deb, S. K. Electrochromic coloration efficiency of a-WO3−y thin films as a function of oxygen deficiency. Appl. Phys. Lett. 1999, 75, 1541–1543.

    Article  CAS  Google Scholar 

  47. Lee, Y.; Yun, J.; Seo, M.; Kim, S. J.; Oh, J.; Kang, C. M.; Sun, H. J.; Chung, T. D.; Lee, B. Full-color-tunable nanophotonic device using electrochromic tungsten trioxide thin film. Nano Lett. 2020, 20, 6084–6090.

    Article  CAS  Google Scholar 

  48. Darmawi, S.; Burkhardt, S.; Leichtweiss, T.; Weber, D. A.; Wenzel, S.; Janek, J.; Elm, M. T.; Klar, P. J. Correlation of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide. Phys. Chem. Chem. Phys. 2015, 17, 15903–15911.

    Article  CAS  Google Scholar 

  49. Henningsson, A.; Stashans, A.; Sandell, A.; Rensmo, H.; Södergren, S.; Lindström, H.; Vayssieres, L.; Hagfeldt, A.; Lunell, S.; Siegbahn, H. Proton insertion in polycrystalline WO3 studied with electron spectroscopy and semi-empirical calculations. Adv. Quantum Chem. 2004, 47, 23–36.

    Article  CAS  Google Scholar 

  50. Su, L. Y.; Lu, Z. All solid-state smart window of electrodeposited WO3 and TiO2 particulate film with PTREFG gel electrolyte. J. Phys. Chem. Solids 1998, 59, 1175–1180.

    Article  CAS  Google Scholar 

  51. De Angelis, B. A.; Schiavello, M. The oxidation state of tungsten in NaxWO3 bronzes as determined by X-ray photoelectron spectroscopy. Chem. Phys. Lett. 1976, 38, 155–157.

    Article  CAS  Google Scholar 

  52. Tu, J. G.; Lei, H. P.; Yu, Z. J.; Jiao, S. Q. Ordered WO3x nanorods: Facile synthesis and their electrochemical properties for aluminumion batteries. Chem. Commun. 2018, 54, 1343–1346.

    Article  CAS  Google Scholar 

  53. Yao, J. N.; Chen, P.; Fujishima, A. Electrochromic behavior of electrodeposited tungsten oxide thin films. J. Electroanal. Chem. 1996, 406, 223–226.

    Article  Google Scholar 

  54. Modugno, G.; Roati, G.; Riboli, F.; Ferlaino, F.; Brecha, R. J.; Inguscio, M. Collapse of a degenerate Fermi gas. Science 2002, 297, 2240–2243.

    Article  CAS  Google Scholar 

  55. Wang, F. G.; Di Valentin, C.; Pacchioni, G. Semiconductor-to-metal transition in WO3−x: Nature of the oxygen vacancy. Phys. Rev. B 2011, 84, 073103.

    Article  Google Scholar 

  56. Sachs, M.; Park, J. S.; Pastor, E.; Kafizas, A.; Wilson, A. A.; Francàs, L.; Gul, S.; Ling, M.; Blackman, C.; Yano, J. et al. Effect of oxygen deficiency on the excited state kinetics of WO3 and implications for photocatalysis. Chem. Sci. 2019, 10, 5667–5677.

    Article  CAS  Google Scholar 

  57. Alam, M. Z.; De Leon, I.; Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 2016, 352, 795–797.

    Article  CAS  Google Scholar 

  58. Guo, Q. B.; Cui, Y. D.; Yao, Y. H.; Ye, Y. T.; Yang, Y.; Liu, X. M.; Zhang, S. A.; Liu, X. F.; Qiu, J. R.; Hosono, H. A solution-processed ultrafast optical switch based on a nanostructured epsilon-near-zero medium. Adv. Mater. 2017, 29, 1700754

    Article  Google Scholar 

  59. Malik, O.; De La Hidalga-Wade, F. J. Surface-barrier photodiodes with transparent electrodes for high-performance detection in the UV-NIR spectrum. In Optoelectronics-Advanced Device Structures. Pyshkin, S. L.; Ballato, J., Eds.; InTechOpen: Rijeka, Croatia, 2017.

    Google Scholar 

  60. Dixon, S. C.; Scanlon, D. O.; Carmalt, C. J.; Parkin, I. P. n-Type doped transparent conducting binary oxides: An overview. J. Mater. Chem. C 2016, 4, 6946–6961.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 51772214, 51432006, and 51701170), the Ministry of Science and Technology of China (No. 2011DFG52970), the Ministry of Education of China (IRT14R23), 111 Project (No. B13025), the Innovation Program of Shanghai Municipal Education Commission, the national youth talent support program (No. W03070073), and the project of science and technology plan of Fujian Province (No. 2018J01520).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhipeng Huang or Chi Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, R., Li, H., Diao, M. et al. Fast electrochemical activation of the broadband saturable absorption of tungsten oxide nanoporous film. Nano Res. 15, 326–332 (2022). https://doi.org/10.1007/s12274-021-3478-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3478-9

Keywords

Navigation