Skip to main content
Log in

Epitaxially aligned single-crystal gold nanoplates formed in large-area arrays at high yield

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Well-tailored nanomaterials with a single-crystal character provide ideal building blocks for on-chip plasmonic devices. Although colloidal methods have demonstrated mastery over the synthesis of such structures, it has proven quite difficult to deploy these same nanomaterials on substrate surfaces in a highly deterministic manner where precise control over position and orientation is ensured. Herein, we demonstrate a room-temperature two-reagent liquid-phase seed-mediated synthesis of gold nanoplates directly on substrate surfaces in arrays over a square-centimeter area. The synthesis is reliant on benchtop lithographic and directed-assembly processes that give rise to single-crystal seeds of gold that express both an epitaxial relationship with the underlying substrate and the internal defect structure required to promote a two-dimensional growth mode. The resulting structures are highly faceted and, because seed-substrate epitaxy is imposed upon the growing nanoplates, are identically aligned on the substrate surface. Nanoplate yields are increased to values as high as 95% using a post-processing sonication procedure that selectively removes a small population of irregularly shaped nanostructures from the substrate surface, and in doing so, gives rise to an uncompromised plasmonic response. The work, therefore, advances the techniques needed to integrate single-crystal nanomaterials with wafer-based technologies and provides leading-edge capabilities in terms of defining large-area arrays of plasmonic structures with the nanoplate geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, H. Y.; Kinnear, C.; Mulvaney, P. Fabrication of single-nanocrystal arrays. Adv. Mater. 2020, 32, 1904551.

    Article  CAS  Google Scholar 

  2. Hughes, R. A.; Menumerov, E.; Neretina, S. When lithography meets self-assembly: A review of recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces. Nanotechnology 2017, 28, 282002.

    Article  Google Scholar 

  3. Lin, Q. Y.; Mason, J. A.; Li, Z. Y.; Zhou, W. J.; O’Brien, M. N.; Brown, K. A.; Jones, M. R.; Butun, S.; Lee, B.; Dravid, V. P. et al. Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science 2018, 359, 669–672.

    Article  CAS  Google Scholar 

  4. Zhou, W. J.; Liu, Z. Z.; Huang, Z. Y.; Lin, H. X.; Samanta, D.; Lin, Q. Y.; Aydin, K.; Mirkin, C. A. Device-quality, reconfigurable metamaterials from shape-directed nanocrystal assembly. Proc. Natl. Acad. Sci. USA 2020, 117, 21052–21057.

    Article  CAS  Google Scholar 

  5. Ni, S. B.; Isa, L.; Wolf, H. Capillary assembly as a tool for the heterogeneous integration of micro- and nanoscale objects. Soft Matter 2018, 14, 2978–2995.

    Article  CAS  Google Scholar 

  6. Flauraud, V.; Mastrangeli, M.; Bernasconi, G. D.; Butet, J.; Alexander, D. T. L.; Shahrabi, E.; Martin, O. J. F.; Brugger, J. Nanoscale topographical control of capillary assembly of nanoparticles. Nat. Nanotechnol. 2017, 12, 73–80.

    Article  CAS  Google Scholar 

  7. Neretina, S.; Hughes, R. A.; Gilroy, K. D.; Hajfathalian, M. Noble metal nanostructure synthesis at the liquid-substrate interface: New structures, new insights, and new possibilities. Acc. Chem. Res. 2016, 49, 2243–2250.

    Article  CAS  Google Scholar 

  8. Kinnear, C.; Cadusch, J.; Zhang, H. Y.; Lu, J. N.; James, T. D.; Roberts, A.; Mulvaney, P. Directed chemical assembly of single and clustered nanoparticles with silanized templates. Langmuir 2018, 34, 7355–7363.

    Article  CAS  Google Scholar 

  9. Yang, L. L.; Yan, B.; Premasiri, W. R.; Ziegler, L. D.; Dal Negro, L.; Reinhard, B. M. Engineering nanoparticle cluster arrays for bacterial biosensing: The role of the building block in multiscale SERS substrates. Adv. Funct. Mater. 2010, 20, 2619–2628.

    Article  CAS  Google Scholar 

  10. Chen, P. C.; Liu, X. L.; Hedrick, J. L.; Xie, Z.; Wang, S. Z.; Lin, Q. Y.; Hersam, M. C.; Dravid, V. P.; Mirkin, C. A. Polyelemental nanoparticle libraries. Science 2016, 352, 1565–1569.

    Article  CAS  Google Scholar 

  11. Chen, P. C.; Liu, G. L.; Zhou, Y.; Brown, K. A.; Chernyak, N.; Hedrick, J. L.; He, S.; Xie, Z.; Lin, Q. Y.; Dravid, V. P. et al. Tip-directed synthesis of multimetallic nanoparticles. J. Am. Chem. Soc. 2015, 137, 9167–9173.

    Article  CAS  Google Scholar 

  12. Gargiulo, J.; Violi, I. L.; Cerrota, S.; Chvátal, L.; Cortés, E.; Perassi, E. M.; Diaz, F.; Zemánek, P.; Stefani, F. D. Accuracy and mechanistic details of optical printing of single Au and Ag nanoparticles. ACS Nano 2017, 11, 9678–9688.

    Article  CAS  Google Scholar 

  13. Zhang, H. Y.; Cadusch, J.; Kinnear, C.; James, T.; Roberts, A.; Mulvaney, P. Direct assembly of large area nanoparticle arrays. ACS Nano 2018, 12, 7529–7537.

    Article  CAS  Google Scholar 

  14. Hong, X.; Tan, C. L.; Chen, J. Z.; Xu, Z. C.; Zhang, H. Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Res. 2015, 8, 40–55.

    Article  CAS  Google Scholar 

  15. Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409–6455.

    Article  CAS  Google Scholar 

  16. Golze, S. D.; Hughes, R. A.; Rouvimov, S.; Neal, R. D.; Demille, T. B.; Neretina, S. Plasmon-mediated synthesis of periodic arrays of gold nanoplates using substrate-immobilized seeds lined with planar defects. Nano Lett. 2019, 19, 5653–5660.

    Article  CAS  Google Scholar 

  17. Yoo, Y.; Kim, S. I.; Kim, J.; Kim, B. Geometry-tailored freestanding epitaxial Pd, AuPd, and Au nanoplates driven by surface interactions. Nanoscale 2020, 12, 6537–6544.

    Article  CAS  Google Scholar 

  18. Yoo, Y.; Lee, H.; Lee, H.; Lee, M.; Yang, S.; Hwang, A.; Kim, S. I.; Park, J. Y.; Choo, J.; Kang, T. et al. Surfactant-free vapor-phase synthesis of single-crystalline gold nanoplates for optimally bioactive surfaces. Chem. Mater. 2017, 29, 8747–8756.

    Article  CAS  Google Scholar 

  19. Sun, Y. G. Metal nanoplates on semiconductor substrates. Adv. Funct. Mater. 2010, 20, 3646–3657.

    Article  CAS  Google Scholar 

  20. Wu, Q. Y.; Diao, P.; Sun, J.; Jin, T.; Xu, D.; Xiang, M. Electrodeposition of vertically aligned silver nanoplate arrays on indium tin oxide substrates. J. Phys. Chem. C 2015, 119, 20709–20720.

    Article  CAS  Google Scholar 

  21. Seo, B.; Choi, S.; Kim, J. Simple electrochemical deposition of Au nanoplates from Au(I) cyanide complexes and their electrocatalytic activities. ACS Appl. Mater. Interfaces 2011, 3, 441–446.

    Article  CAS  Google Scholar 

  22. Scarabelli, L.; Coronado-Puchau, M.; Giner-Casares, J. J.; Langer, J.; Liz-Marzán, L. M. Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 2014, 8, 5833–5842.

    Article  CAS  Google Scholar 

  23. Lee, Y. H.; Lee, C. K.; Tan, B. R.; Rui Tan, J. M.; Phang, I. Y.; Ling, X. Y. Using the Langmuir-Schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayer films. Nanoscale 2013, 5, 6404–6412.

    Article  CAS  Google Scholar 

  24. Liebig, F.; Sarhan, R. M.; Prietzel, C.; Reinecke, A.; Koetz, J. “Green” gold nanotriangles: Synthesis, purification by polyelectrolyte/micelle depletion flocculation and performance in surface-enhanced Raman scattering. RSC Adv. 2016, 6, 33561–33568.

    Article  CAS  Google Scholar 

  25. Fu, Q.; Ran, G. J.; Xu, W. L. Direct self-assembly of CTAB-capped Au nanotriangles. Nano Res. 2016, 9, 3247–3256.

    Article  CAS  Google Scholar 

  26. Liyanage, T.; Masterson, A. N.; Hati, S.; Ren, G.; Manicke, N. E.; Rusyniak, D. E.; Sardar, R. Optimization of electromagnetic hot spots in surface-enhanced Raman scattering substrates for an ultrasensitive drug assay of emergency department patients’ plasma. Analyst 2020, 145, 7662–7672.

    Article  CAS  Google Scholar 

  27. Walker, D. A.; Browne, K. P.; Kowalczyk, B.; Grzybowski, B. A. Self-assembly of nanotriangle superlattices facilitated by repulsive electrostatic interactions. Angew. Chem. 2010, 122, 6912–6915.

    Article  Google Scholar 

  28. Zhou, Y.; Zhou, X. Z.; Park, D. J.; Torabi, K.; Brown, K. A.; Jones, M. R.; Zhang, C.; Schatz, G. C.; Mirkin, C. A. Shape-selective deposition and assembly of anisotropic nanoparticles. Nano Lett. 2014, 14, 2157–2161.

    Article  CAS  Google Scholar 

  29. Beeram, S. R.; Zamborini, F. P. Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing. ACS Nano 2010, 4, 3633–3646.

    Article  CAS  Google Scholar 

  30. Zhang, X. Y.; Hu, A. M.; Zhang, T.; Lei, W.; Xue, X. J.; Zhou, Y. H.; Duley, W. W. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable Plasmon resonance properties. ACS Nano 2011, 5, 9082–9092.

    Article  CAS  Google Scholar 

  31. Liyanage, T.; Rael, A.; Shaffer, S.; Zaidi, S.; Goodpaster, J. V; Sardar, R. Fabrication of a self-assembled and flexible SERS nanosensor for explosive detection at parts-per-quadrillion levels from fingerprints. Analyst 2018, 143, 2012–2022.

    Article  CAS  Google Scholar 

  32. Liyanage, T.; Masterson, A. N.; Oyem, H. H.; Kaimakliotis, H.; Nguyen, H.; Sardar, R. Plasmoelectronic-based ultrasensitive assay of tumor suppressor microRNAs directly in patient plasma: Design of highly specific early cancer diagnostic technology. Anal. Chem. 2019, 91, 1894–1903.

    Article  CAS  Google Scholar 

  33. Hwang, A.; Kim, E.; Moon, J.; Lee, H.; Lee, M., Jeong, J.; Lim, E. K.; Jung, J.; Kang, T.; Kim, B. Atomically flat Au nanoplate platforms enable ultraspecific attomolar detection of protein biomarkers. ACS Appl. Mater. Interfaces 2019, 11, 18960–18967.

    Article  CAS  Google Scholar 

  34. Yang, S.; Park, K.; Kim, B.; Kang, T. Low-temperature vapor-phase synthesis of single-crystalline gold nanostructures: Toward exceptional electrocatalytic activity for methanol oxidation reaction. Nanomaterials 2019, 9, 595.

    Article  CAS  Google Scholar 

  35. Li, Y. Y.; Diao, P.; Jin, T.; Sun, J.; Xu, D. Shape-controlled electrodeposition of standing Rh nanoplates on indium tin oxide substrates and their electrocatalytic activity toward formic acid oxidation. Electrochim. Acta 2012, 83, 146–154.

    Article  CAS  Google Scholar 

  36. Jeong, W.; Lee, M.; Lee, H.; Lee, H.; Kim, B.; Park, J. Y. Ultraflat Au nanoplates as a new building block for molecular electronics. Nanotechnology 2016, 27, 215601.

    Article  Google Scholar 

  37. Menumerov, E.; Golze, S. D.; Hughes, R. A; Neretina, S. Arrays of highly complex noble metal nanostructures using nanoimprint lithography in combination with liquid-phase epitaxy. Nanoscale 2018, 10, 18186–18194.

    Article  CAS  Google Scholar 

  38. Tan, T. X.; Zhang, S.; Wang, J.; Zheng, Y. Q.; Lai, H. P.; Liu, J. L.; Qin, F. Q.; Wang, C. Resolving the stacking fault structure of silver nanoplates. Nanoscale 2021, 13, 195–205.

    Article  CAS  Google Scholar 

  39. Xia, Y. N.; Gilroy, K. D.; Peng, H. C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 60–95.

    Article  CAS  Google Scholar 

  40. Farzinpour, P.; Sundar, A.; Gilroy, K. D.; Eskin, Z. E.; Hughes, R. A.; Neretina, S. Dynamic templating: A large area processing route for the assembly of periodic arrays of sub-micrometer and nanoscale structures. Nanoscale 2013, 5, 1929–1938.

    Article  CAS  Google Scholar 

  41. Jang, M. H.; Kim, J. K.; Tak, H.; Yoo, H. Controllable synthesis of multi-layered gold spirangles. J. Mater. Chem. 2011, 21, 17606–17608.

    Article  CAS  Google Scholar 

  42. Oh, J. H.; Lee, J. S. One-pot photochemical synthesis of gold nanoplates using nonionic diblock copolymers and their surface functionalization. Bull. Korean Chem. Soc. 2018, 39, 1165–1170.

    Article  CAS  Google Scholar 

  43. Sun, Z. W.; Chen, X.; Wang, L. Y.; Zhang, G. D.; Jing, B. Synthesis of gold nanoplates in lamellar liquid crystal. Colloids Surf. A: Physicochem. Eng. Asp. 2008, 326, 23–28.

    Article  CAS  Google Scholar 

  44. Kim, B. H.; Oh, J. H.; Han, S. H.; Yun, Y. J.; Lee, J. S. Combinatorial polymer library approach for the synthesis of silver nanoplates. Chem. Mater. 2012, 24, 4424–4433.

    Article  CAS  Google Scholar 

  45. Bialas, H.; Heneka, K. Epitaxy of fcc metals on dielectric substrates. Vacuum 1994, 45, 79–87.

    Article  CAS  Google Scholar 

  46. Jauffred, L.; Samadi, A.; Klingberg, H.; Bendix, P. M.; Oddershede, L. B. Plasmonic heating of nanostructures. Chem. Rev. 2019, 119, 8087–8130.

    Article  CAS  Google Scholar 

  47. Joshi, G. K.; McClory, P. J.; Muhoberac, B. B.; Kumbhar, A.; Smith, K. A.; Sardar, R. Designing efficient localized surface Plasmon resonance-based sensing platforms: Optimization of sensor response by controlling the edge length of gold nanoprisms. J. Phys. Chem. C 2012, 116, 20990–21000.

    Article  CAS  Google Scholar 

  48. Beeram, S. R.; Zamborini, F. P. Selective attachment of antibodies to the edges of gold nanostructures for enhanced localized surface Plasmon resonance biosensing. J. Am. Chem. Soc. 2009, 131, 11689–11691.

    Article  CAS  Google Scholar 

  49. Jiang, T.; Wang, X. L.; Tang, J.; Tang, S. W. Seed-mediated synthesis of floriated Ag nanoplates as surface enhanced Raman scattering substrate for in situ molecular detection. Mater. Res. Bull., 2018, 97, 201–206.

    Article  CAS  Google Scholar 

  50. Schweitz, K. O.; Schou-Jensen, R. B.; Eskildse, S. S. Ultrasonic pre-treatment for enhanced diamond nucleation. Diam. Relat. Mater. 1996, 5, 206–210.

    Article  CAS  Google Scholar 

  51. Rodriguez-Navarro, A. B. XRD2DScan: New software for polycrystalline materials characterization using two-dimensional X-ray diffraction. J. Appl. Crystallogr. 2006, 39, 905–909.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation Award to S.N. (No. CMMI-1911991). It has also benefited from the facilities available through the Notre Dame Molecular Structure Facility (MSF) and the Notre Dame Integrated Imaging Facility (NDIIF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Neretina.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demille, T.B., Neal, R.D., Preston, A.S. et al. Epitaxially aligned single-crystal gold nanoplates formed in large-area arrays at high yield. Nano Res. 15, 296–303 (2022). https://doi.org/10.1007/s12274-021-3473-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3473-1

Keywords

Navigation