Skip to main content
Log in

Pseudocapacitive desalination via valence engineering with spindle-like manganese oxide/carbon composites

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Manganese tetravalent oxide (MnO2), a superstar Faradic electrode material, has been investigated extensively for capacitive desalination, enabling higher salt adsorption capacity compared to the great majority of carbonous electrodes. However, few works paid attention on the relationship between the valences of manganese oxide and their desalination performance. For the first time, we prepared the spindle-like manganese oxides/carbon composites with divalent (MnO@C), trivalent (Mn2O3@C) and divalent/trivalent (Mn3O4@C) manganese by pyrolysis of manganese carbonate precursor under different condition, respectively. The electrochemical behavior in three-electrode system and electrosorption performance obtained in hybrid membrane capacitive deionization (HMCDI) cells assembled with capacitive carbon electrodes were systematically evaluated, respectively. High salt adsorption capacity (as large as 31.3, 22.2, and 18.9 mg·g−1) and corresponding average salt adsorption rates (0.83, 0.53, and 1.71 mg·g−1min−1) were achieved in 500 mg·L−1 NaCl solution for MnO@C, Mn2O3@C, and Mn3O4@C, respectively. During fifteen electrosorption-desorption cycles, ex-situ water contact angle and morphology comparison analysis demonstrated the superior cycling durability of the manganese oxide electrodes and subtle difference between their surface redox. Furthermore, density functional theory (DFT) was also conducted to elaborate the disparity among the valence states of manganese (+2, +3 and +2/+3) for in-depth understanding. This work introduced manganese oxide with various valences to blaze new trails for developing novel Faradic electrode materials with high-efficiency desalination performance by valence engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pekel, J. F.; Cottam, A.; Gorelick, N.; Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422.

    Article  CAS  Google Scholar 

  2. Wang, Z. D.; Tian, S. H.; Niu, J. J.; Kong, W.; Lin, J. Y.; Hao, X. G.; Guan, G. Q. An electrochemically switched ion exchange process with self-electrical-energy recuperation for desalination. Sep. Purif. Technol. 2020, 239, 116521.

    Article  CAS  Google Scholar 

  3. Al-Zoubi, H.; Al-Amri, F.; Khalifa, A. E.; Al-Zoubi, A.; Abid, M.; Younis, E.; Mallick, T. K. A comprehensive review of air gap membrane distillation process. Desalin. Water Treat. 2018, 110, 27–64.

    Article  CAS  Google Scholar 

  4. Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane distillation: A comprehensive review. Desalination 2012, 287, 2–18.

    Article  CAS  Google Scholar 

  5. Han, D.; He, W. F.; Yue, C.; Pu, W. H. Study on desalination of zero-emission system based on mechanical vapor compression. Appl. Energy 2017, 185, 1490–1496.

    Article  Google Scholar 

  6. Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717.

    Article  CAS  Google Scholar 

  7. Zhou, J.; Zhou, H. J.; Zhang, Y. Z.; Wu, J.; Zhang, H. M.; Wang, G. Z.; Li, J. X. Pseudocapacitive deionization of uranium(VI) with WO3/C electrode. Chem. Eng. J. 2020, 398, 125460.

    Article  CAS  Google Scholar 

  8. Wang, G. Z.; Yan, T. T.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Trace-Fe-enhanced capacitive deionization of saline water by boosting electron transfer of electro-adsorption sites. Environ. Sci. Technol. 2020, 54, 8411–8419.

    Article  CAS  Google Scholar 

  9. Wu, T. T.; Wang, G.; Zhan, F.; Dong, Q.; Ren, Q. D.; Wang, J. R.; Qiu, J. S. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization. Water Res. 2016, 93, 30–37.

    Article  CAS  Google Scholar 

  10. Ding, M.; Fan, S.; Huang, S. Z.; Pam, M. E.; Guo, L.; Shi, Y. M.; Yang, H. Y. Tunable pseudocapacitive behavior in metal-organic framework-derived TiO2@porous carbon enabling high-performance membrane capacitive deionization. ACS Appl. Energy Mater. 2019, 2, 1812–1822.

    Article  CAS  Google Scholar 

  11. Srimuk, P.; Lee, J.; Fleischmann, S.; Choudhury, S.; Jäckel, N.; Zeiger, M.; Kim, C.; Aslan, M.; Presser, V. Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few-layered molybdenum disulfide. J. Mater. Chem. A 2017, 5, 15640–15649.

    Article  CAS  Google Scholar 

  12. Lumley, M. A.; Nam, D. H.; Choi, K. S. Elucidating structure-composition-property relationships of Ni-based Prussian blue analogues for electrochemical seawater desalination. ACS Appl. Mater. Interfaces 2020, 12, 36014–36025.

    Article  CAS  Google Scholar 

  13. Lee, J.; Kim, S.; Yoon, J. Rocking chair desalination battery based on Prussian blue electrodes. Acs Omega 2017, 2, 1653–1659.

    Article  CAS  Google Scholar 

  14. Xu, Y. S.; Zhou, H. J.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Selective pseudocapacitive deionization of calcium ions in copper hexacyanoferrate. ACS Appl. Mater. Interfaces 2020, 12, 41437–41445.

    Article  CAS  Google Scholar 

  15. Wu, T. T.; Wang, G.; Wang, S. Y.; Zhan, F.; Fu, Y.; Qiao, H. Y.; Qiu, J. S. Highly stable hybrid capacitive deionization with a MnO2 anode and a positively charged cathode. Environ. Sci. Technol. Lett. 2018, 5, 98–102.

    Article  CAS  Google Scholar 

  16. Li, M.; Park, H. G. Pseudocapacitive coating for effective capacitive deionization. ACS Appl. Mater. Interfaces 2018, 10, 2442–2450.

    Article  CAS  Google Scholar 

  17. Leong, Z. Y.; Yang, H. Y. A study of MnO2 with different crystalline forms for pseudocapacitive desalination. ACS Appl. Mater. Interfaces 2019, 11, 13176–13184.

    Article  CAS  Google Scholar 

  18. Kim, Y.; Ha, K. H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem.-Eur. J. 2014, 20, 11980–11992.

    Article  CAS  Google Scholar 

  19. Kang, H. Y.; Liu, Y. C.; Cao, K. Z.; Zhao, Y.; Jiao, L. F.; Wang, Y. J.; Yuan, H. T. Update on anode materials for Na-ion batteries. J. Mater. Chem. A 2015, 3, 17899–17913.

    Article  CAS  Google Scholar 

  20. Yusoff, N. F. M.; Idris, N. H.; Din, M. F. M.; Majid, S. R.; Harun, N. A.; Rahman, M. M. Investigation on the electrochemical performances of Mn2O3 as a potential anode for Na-ion batteries. Sci. Rep. 2020, 10, 9207.

    Article  CAS  Google Scholar 

  21. He, Y. Z.; Xu, P.; Zhang, B.; Du, Y. C.; Song, B.; Han, X. J.; Peng, H. S. Ultrasmall MnO nanoparticles supported on nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 38401–38408.

    Article  CAS  Google Scholar 

  22. Qin, Y. M.; Jiang, Z. Q.; Guo, L. P.; Huang, J. L.; Jiang, Z. J. Controlled thermal oxidation derived Mn3O4 encapsulated in nitrogen doped carbon as an anode for lithium/sodium ion batteries with enhanced performance. Chem. Eng. J. 2021, 406, 126894.

    Article  CAS  Google Scholar 

  23. Wang, L. Z.; Tang, F. Q.; Ozawa, K.; Chen, Z. G.; Mukherj, A.; Zhu, Y. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. A general single-source route for the preparation of hollow nanoporous metal oxide structures. Angew. Chem., Int. Ed. 2009, 48, 7048–7051.

    Article  CAS  Google Scholar 

  24. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069.

    Article  CAS  Google Scholar 

  25. Zhang, J.; Lin, J.; Zeng, Y. B.; Zhang, Y.; Guo, H. Morphological and structural evolution of MnO@C anode and its application in lithium-ion capacitors. ACS Appl. Energy Mater. 2019, 2, 8345–8358.

    Article  CAS  Google Scholar 

  26. Tan, Q. Y.; Li, X. T.; Zhang, B.; Chen, X.; Tian, Y. W.; Wan, H. Z.; Zhang, L. S.; Miao, L.; Wang, C.; Gan, Y. et al. Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery. Adv. Energy Mater. 2020, 10, 2001050.

    Article  CAS  Google Scholar 

  27. Wang, R. F.; Ma, Y. Y.; Wang, H.; Key, J.; Brett, D.; Ji, S.; Yin, S. B.; Shen, P. K. A cost effective, highly porous, manganese oxide/carbon supercapacitor material with high rate capability. J. Mater. Chem. A 2016, 4, 5390–5394.

    Article  CAS  Google Scholar 

  28. Jiang, M.; Abushrenta, N.; Wu, X. C.; Li, Y. P.; Sun, X. M. Investigation for the synthesis of hierarchical Co3O4@MnO2 nanoarrays materials and their application for supercapacitor. J. Mater. Sci. Mater. Electron. 2017, 28, 1281–1287.

    Article  CAS  Google Scholar 

  29. Sawangphruk, M.; Srimuk, P.; Chiochan, P.; Krittayavathananon, A.; Luanwuthi, S.; Limtrakul, J. High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 2013, 60, 109–116.

    Article  CAS  Google Scholar 

  30. Ma, Y.; Ma, Y. J.; Kim, G. T.; Diemant, T.; Behm, R. J.; Geiger, D.; Kaiser, U.; Varzi, A.; Passerini, S. Superior lithium storage capacity of α-MnS nanoparticles embedded in S-doped carbonaceous mesoporous frameworks. Adv. Energy Mater. 2019, 9, 1902077.

    Article  CAS  Google Scholar 

  31. Ma, J.; Xiong, Y. C.; Dai, X. H.; Yu, F. Zinc spinel ferrite nano-particles as a pseudocapacitive electrode with ultrahigh desalination capacity and long-term stability. Environ. Sci. Technol. Lett. 2020, 7, 118–125.

    Article  CAS  Google Scholar 

  32. Tian, Z. N.; Tong, X. L.; Sheng, G.; Shao, Y. L.; Yu, L. H.; Tung, V.; Sun, J. Y.; Kaner, R. B.; Liu, Z. F. Printable magnesium ion quasi-solid-state asymmetric supercapacitors for flexible solar-charging integrated units. Nat. Commun. 2019, 10, 4913.

    Article  Google Scholar 

  33. El-Deen, A. G.; Barakat, N. A. M.; Kim, H. Y. Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology. Desalination 2014, 344, 289–298.

    Article  CAS  Google Scholar 

  34. Quan, X. P.; Fu, Z. B.,; Yuan, L.; Zhong, M. L.; Mi, R.; Yang, X.; Yi, Y.; Wang, C. Y. Capacitive deionization of NaCl solutions with ambient pressure dried carbon aerogel microsphere electrodes. RSC Adv. 2017, 7, 35875–35882.

    Article  CAS  Google Scholar 

  35. Khan, Z. U.; Yan, T. T.; Shi, L. Y.; Zhang, D. S. Improved capacitive deionization by using 3D intercalated graphene sheet-sphere nanocomposite architectures. Environ. Sci. Nano 2018, 5, 980–991.

    Article  Google Scholar 

  36. Liu, Y.; Xu, X. T.; Wang, M.; Lu, T.; Sun, Z.; Pan, L. K. Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization. Chem. Commun. 2015, 51, 12020–12023.

    Article  CAS  Google Scholar 

  37. Xu, X. T.; Pan, L. K.; Liu, Y.; Lu, T.; Sun, Z.; Chua, D. H. C. Facile synthesis of novel graphene sponge for high performance capacitive deionization. Sci. Rep. 2015, 5, 8458.

    Article  CAS  Google Scholar 

  38. Chen, B. W.; Wang, Y. F.; Chang, Z.; Wang, X. W.; Li, M. X.; Liu, X.; Zhang, L. X.; Wu, Y. P. Enhanced capacitive desalination of MnO2 by forming composite with multi-walled carbon nanotubes. RSC Adv. 2016, 6, 6730–6736.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2017YFA0207202) and the National Natural Science Foundation of China (Nos. 51872291 and 51872292).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongjian Zhou or Haimin Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Xiang, S., Mao, H. et al. Pseudocapacitive desalination via valence engineering with spindle-like manganese oxide/carbon composites. Nano Res. 14, 4878–4884 (2021). https://doi.org/10.1007/s12274-021-3467-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3467-z

Keywords

Navigation