Skip to main content
Log in

Graphene foam resonators: Fabrication and characterization

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Three-dimensional graphene foams (GFs) benefit from a large surface area and unique physical properties. We present here the first-ever miniaturized GF-based resonators. We developed a simple yet reliable fabrication process, in which GFs are synthesized and assembled on a cavity to form suspended GF devices. We electrostatically excited these devices and analyzed their resonance and ring-down responses. We observed significant energy dissipation, as the quality factor of the devices was in the order of several tens. Additionally, we investigated the influence of temperature on the operation of the devices and found that high temperatures mechanically soften the resonators but also considerably enhance energy dissipation. Finally, our devices demonstrated a mode-coupling of a resonance mode and a mode having twice its frequency. Thus, this work paves the way toward the development of novel GF resonators that could be integrated into future devices, such as GF-based nano-electromechanical sensors, electrical circuits, and oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy, S. K.; Ferry, D. B.; Misra, A. Highly compressible behavior of polymer mediated three-dimensional network of graphene foam. RSC Adv. 2014, 4, 50074–50080.

    Article  CAS  Google Scholar 

  2. Pettes, M. T.; Ji, H. X.; Ruoff, R. S.; Shi, L. Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite. Nano Lett. 2012, 12, 2959–2964.

    Article  CAS  Google Scholar 

  3. Ren, H. Y.; Tang, M.; Guan, B. L.; Wang, K. X.; Yang, J. W.; Wang, F. F.; Wang, M. Z.; Shan, J. Y.; Chen, Z. L.; Wei, D. et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 2017, 29, 1702590.

    Article  Google Scholar 

  4. Brownson, D. A. C.; Figueiredo-Filho, L. C. S.; Ji, X. B.; Gómez-Mingot, M.; Iniesta, J.; Fatibello-Filho, O.; Kampouris, D. K.; Banks, C. E. Freestanding three-dimensional graphene foam gives rise to beneficial electrochemical signatures within non-aqueous media. J. Mater. Chem. A 2013, 1, 5962–5972.

    Article  CAS  Google Scholar 

  5. Samad, Y. A.; Li, Y. Q.; Alhassan, S. M.; Liao, K. Novel graphene foam composite with adjustable sensitivity for sensor applications. ACS Appl. Mater. Interfaces 2015, 7, 9195–9202.

    Article  CAS  Google Scholar 

  6. Xu, R.; Zhang, H.; Cai, Y.; Ruan, J.; Qu, K.; Liu, E.; Ni, X.;. Lu, M.; Dong, X., Flexible and wearable 3D graphene sensor with 141 KHz frequency signal response capability. Appl. Phys. Lett. 2017, 111, 103501.

    Article  Google Scholar 

  7. Xu, R. Q.; Lu, Y. Q.; Jiang, C. H.; Chen, J.; Mao, P.; Gao, G. H.; Zhang, L. B.; Shan, W. Facile fabrication of three-dimensional graphene foam/poly (dimethylsiloxane) composites and their potential application as strain sensor. ACS Appl. Mater. Interfaces 2014, 6, 13455–13460.

    Article  CAS  Google Scholar 

  8. Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.

    Article  CAS  Google Scholar 

  9. Cohen, Y.; Reddy, S. K.; Ya’akobovitz, A. Heat dissipation in graphene foams. Nano Res. 2021, 14, 829–833.

    Article  CAS  Google Scholar 

  10. Reddy, S. K.; Ya’akobovitz, A. Electromechanical behavior of graphene foams. Appl. Phys. Lett. 2019, 115, 211902.

    Article  Google Scholar 

  11. Ya’akobovitz, A.; Krylov, S. The influence of perforation on electrostatic and damping forces in thick SOI MEMS structures. J. Micromech. Microeng. 2012, 22, 115006.

    Article  Google Scholar 

  12. Kon, S.; Horowitz, R. A high-resolution MEMS piezoelectric strain sensor for structural vibration detection. IEEE Sens. J. 2008, 8, 2027–2035.

    Article  CAS  Google Scholar 

  13. Ben-Shimon, Y.; Ya’akobovitz, A. Magnetic excitation and dissipation of multilayer two-dimensional resonators. Appl. Phys. Lett. 2021, 118, 063103.

    Article  CAS  Google Scholar 

  14. Li, M.; Tang, H. X.; Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotechnol. 2007, 2, 114–120.

    Article  CAS  Google Scholar 

  15. van Beek, J. T. M.; Puers, R. A review of MEMS oscillators for frequency reference and timing applications. J. Micromech. Microeng. 2011, 22, 013001.

    Article  Google Scholar 

  16. Halevy, O.; Krakover, N.; Krylov, S. Feasibility study of a resonant accelerometer with bistable electrostatically actuated cantilever as a sensing element. Int. J. Non.-Linear. Mech. 2020, 118, 103255.

    Article  Google Scholar 

  17. Ilyas, S.; Younis, M. I. Resonator-based M/NEMS logic devices: Review of recent advances. Sens. Actuators A: Phys. 2020, 302, 111821.

    Article  CAS  Google Scholar 

  18. Ya’akobovitz, A.; Krylov, S.; Shacham-Diamand, Y. Large angle SOI tilting actuator with integrated motion transformer and amplifier. Sens. Actuators A: Phys. 2008, 148, 422–436.

    Article  Google Scholar 

  19. Hafiz, M. A. A.; Kosuru, L.; Hajjaj, A. Z.; Younis, M. I. Highly tunable narrow bandpass MEMS filter. IEEE Trans. Electron Devices 2017, 64, 3392–3398.

    Article  Google Scholar 

  20. Kim, S. J.; Park, J. Y.; Lee, S. H.; Yi, S. H. Humidity sensors using porous silicon layer with mesa structure. J..Phys. D: Appl. Phys. 2000, 33, 1781–1784.

    Article  CAS  Google Scholar 

  21. Ding, Y.; Liu, Z.; Liu, L.; Li, Z. A surface micromachining process for suspended RF-MEMS applications using porous silicon. Microsyst. Technol. 2003, 9, 470–473.

    Article  CAS  Google Scholar 

  22. Seals, L.; Gole, J. L.; Tse, L. A.; Hesketh, P. J. Rapid, reversible, sensitive porous silicon gas sensor. J. Appl. Phys. 2002, 91, 2519–2523.

    Article  CAS  Google Scholar 

  23. Shtenberg, G.; Massad-Ivanir, N.; Fruk, L.; Segal, E. Nanostructured porous Si optical biosensors: Effect of thermal oxidation on their performance and properties. ACS Appl. Mater. Interfaces 2014, 6, 16049–16055.

    Article  CAS  Google Scholar 

  24. Lammel, G.; Schweizer, S.; Schiesser, S.; Renaud, P. Tunable optical filter of porous silicon as key component for a MEMS spectrometer. J. Microelectromech. Syst. 2002, 11, 815–827.

    Article  CAS  Google Scholar 

  25. Xue, Y. M.; Dai, P. C.; Zhou, M.; Wang, X.; Pakdel, A.; Zhang, Q. H.; Takei, T.; Fu, X. W.; Popov, Z. I. et al. Multifunctional superelastic foam-like boron nitride nanotubular cellular-network architectures. ACS Nano, 2017, 11, 558–568.

    Article  CAS  Google Scholar 

  26. Meirovitch, L. Elements of Vibration Analysis; 2nd ed. McGraw-Hill: New York, 1986.

    Google Scholar 

  27. Hu, K. M.; Bo, P.; Li, X. Y.; Xin, Y. H.; Bai, X. R.; Li, L.; Zhang, W. M. Resonant nano-electromechanical systems from 2D materials. EPL. 2020, 131, 58001.

    Article  CAS  Google Scholar 

  28. Lifshitz, R.; Roukes, M. L. Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 2008, 61, 5600–5609.

    Article  Google Scholar 

  29. Srikar, V. T.; Senturia, S. D. Thermoelastic damping in fine-grained polysilicon flexural beam resonators. J. Microelectromech. Syst. 2002, 11, 499–504.

    Article  CAS  Google Scholar 

  30. Yasumura, K. Y.; Stowe, T. D.; Chow, E. M.; Pfafman, T.; Kenny, T. W.; Stipe, B. C.; Rugar, D. Quality factors in micron- and submicron-thick cantilevers. J. Microelectromech. Syst. 2000, 9, 117–125.

    Article  CAS  Google Scholar 

  31. Ko, J. H.; Jeong, J.; Choi, J.; Cho, M. Quality factor in clamping loss of nanocantilever resonators. Appl. Phys. Lett. 2011, 98, 171909.

    Article  Google Scholar 

  32. Duwel, A.; Gorman, J.; Weinstein, M.; Borenstein, J.; Ward, P. Experimental study of thermoelastic damping in MEMS gyros. Sens. Actuators A: Phys. 2003, 103, 70–75.

    Article  CAS  Google Scholar 

  33. Cohen, Y.; Reddy, S. K.; Ben-shimon, Y.; Ya’akobovitz, A. Height and morphology dependent heat dissipation of vertically aligned carbon nanotubes. Nanotechnology 2019, 30, 505705.

    Article  CAS  Google Scholar 

  34. Chitara, B.; Ya’akobovitz, A. High-frequency electromechanical resonators based on thin GaTe. Nanotechnology 2017, 28, 42LT02.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaf Ya’akobovitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-Shimon, Y., Reddy, S.K. & Ya’akobovitz, A. Graphene foam resonators: Fabrication and characterization. Nano Res. 15, 225–229 (2022). https://doi.org/10.1007/s12274-021-3463-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3463-3

KeyWords

Navigation