Skip to main content
Log in

Theoretical insights into strong intrinsic piezoelectricity of blue-phosphorus-like group-IV monochalcogenides

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

On the basis of known structures of β-GeTe bulk and the derived monolayer, we proposed a series of structural analogues MXs (M = Ge, Sn; X = S, Se, Te) with an intrinsic built-in electric field via a substitution strategy. Using first-principles calculations, we demonstrated that these MX monolayers and bulks are thermodynamically, dynamically and mechanically stable, and the stabilities of bulks are more robust than the monolayer counterparts. Electronic calculations showed that the monolayers have large band gaps ranging from 2.38 to 3.27 eV while the bulks have pronounced small band gaps ranging from 0.06 to 0.78 eV. The calculated piezoelectric coefficients d11 for the MX monolayers are in the range from 6.6 to 10.9 pm/V. Strikingly, the calculated d33 for the MX bulks are as high as 40.3–213.7 pm/V. By correlating atomic polarizability, atomic mass, relative ion motion, Bader charge and lattice parameters, we proposed an empirical model to estimate the piezoelectric coefficients for the two-dimensional (2D) MXs, where a nice match between the estimated ones and the calculated ones was found. The versatile electronic properties and large piezoelectric coefficients endow MXs a broad prospect of application in optoelectronic and piezoelectric devices, and the revealed underlying mechanisms offer valuable guidelines for seeking novel piezoelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song, H. B.; Karakurt, I.; Wei, M. S.; Liu, N.; Chu, Y.; Zhong, J. W.; Lin, L. W. Lead iodide nanosheets for piezoelectric energy conversion and strain sensing. Nano Energy 2018, 49, 7–13.

    Article  CAS  Google Scholar 

  2. Han, M. D.; Wang, H. L.; Yang, Y. Y.; Liang, C. M.; Bai, W. B.; Yan, Z.; Li, H. B.; Xue, Y. G.; Wang, X. L.; Akar, B. et al. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2019, 2, 26–35.

    Article  Google Scholar 

  3. Yang, Z. B.; Zhou, S. X.; Zu, J.; Inman, D. High-performance piezoelectric energy harvesters and their applications. Joule 2018, 2, 642–697.

    Article  CAS  Google Scholar 

  4. Chorsi, M. T.; Curry, E. J.; Chorsi, H. T.; Das, R.; Baroody, J.; Purohit, P. K.; Ilies, H.; Nguyen, T. D. Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 2019, 31, 1802084.

    Article  Google Scholar 

  5. Zhong, H. K.; Xia, J.; Wang, F. C.; Chen, H. S.; Wu, H. A; Lin, S. S. Graphene-piezoelectric material heterostructure for harvesting energy from water flow. Adv. Funct. Mater. 2017, 27, 1604226.

    Article  Google Scholar 

  6. Wu, W. Z.; Wang, Z. L. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 2016, 1, 16031.

    Article  CAS  Google Scholar 

  7. Janshoff, A.; Galla, H. J.; Steinem, C. Piezoelectric mass-sensing devices as biosensors—an alternative to optical biosensors? Angew. Chem., Int. Ed. 2000, 39, 4004–4032.

    Article  CAS  Google Scholar 

  8. Li, Y. L.; Rao, Y.; Mak, K. F.; You, Y. M.; Wang, S. Y.; Dean, C. R.; Heinz, T. F. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013, 13, 3329–3333.

    Article  CAS  Google Scholar 

  9. Sevik, C.; Çakır, D.; Gülseren, O.; Peeters, F. M. Peculiar piezoelectric properties of soft two-dimensional materials. J. Phys. Chem. C 2016, 120, 13948–13953.

    Article  CAS  Google Scholar 

  10. Gao, R. L.; Gao, Y. Y. Piezoelectricity in two-dimensional group III-V buckled honeycomb monolayers. Phys. Status Solidi Rapid Res. Lett. 2017, 11, 1600412.

    Article  Google Scholar 

  11. Blonsky, M. N.; Zhuang, H. L.; Singh, A. K.; Hennig, R. G. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 2015, 9, 9885–9891.

    Article  CAS  Google Scholar 

  12. Li, W. B.; Li, J. Piezoelectricity in two-dimensional group-III monochalcogenides. Nano Res. 2015, 8, 3796–3802.

    Article  CAS  Google Scholar 

  13. Guo, Y.; Zhou, S.; Bai, Y. Z.; Zhao, J. J. Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers. Appl. Phys. Lett. 2017, 110, 163102.

    Article  Google Scholar 

  14. Fei, R. X.; Li, W. B.; Li, J.; Yang, L. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 2015, 107, 173104.

    Article  Google Scholar 

  15. Duerloo, K. A. N.; Ong, M. T.; Ree Duerloo, K.-A. N.; Ong, M. T.; Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 2012, 3, 2871–2876.

    Article  CAS  Google Scholar 

  16. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  17. Alyörük, M. M.; Aierken, Y.; Çakır, D.; Peeters, F. M.; Sevik, C. Promising piezoelectric performance of single layer transition-metal dichalcogenides and dioxides. J. Phys. Chem. C 2015, 119, 23231–23237.

    Article  Google Scholar 

  18. Zhang, J.; Jia, S.; Kholmanov, I.; Dong, L.; Er, D. Q.; Chen, W. B.; Guo, H.; Jin, Z. H.; Shenoy, V. B.; Shi, L. et al. Janus monolayer transition-metal dichalcogenides. ACS Nano 2017, 11, 8192–8198.

    Article  CAS  Google Scholar 

  19. Dong, L.; Lou, J.; Shenoy, V. B. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano 2017, 11, 8242–8248.

    Article  CAS  Google Scholar 

  20. Dimple; Jena, N.; Rawat, A.; Ahammed, R.; Mohanta, M. K.; De Sarkar, A. Emergence of high piezoelectricity along with robust electron mobility in Janus structures in semiconducting Group IVB dichalcogenide monolayers. J. Mater. Chem. A 2018, 6, 24885–24898.

    Article  CAS  Google Scholar 

  21. Zhang, C. M.; Nie, Y. H.; Sanvito, S.; Du, A. J. First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett. 2019, 19, 1366–1370.

    Article  CAS  Google Scholar 

  22. Chen, Y.; Liu, J. Y.; Yu, J. B.; Guo, Y. G.; Sun, Q. Symmetry-breaking induced large piezoelectricity in Janus tellurene materials. Phys. Chem. Chem. Phys. 2019, 21, 1207–1216.

    Article  CAS  Google Scholar 

  23. Cui, Y.; Peng, L.; Sun, L. P.; Li, M. Y.; Zhang, X. L.; Huang, Y. C. Structures, stabilities and piezoelectric properties of Janus gallium oxides and chalcogenides monolayers. J. Phys. Condens. Matter 2020, 32, 08LT01.

    Article  CAS  Google Scholar 

  24. Zhang, X. L.; Cui, Y.; Sun, L. P.; Li, M. Y.; Du, J. Y.; Huang, Y. C. Stabilities, and electronic and piezoelectric properties of two-dimensional tin dichalcogenide derived Janus monolayers. J. Mater. Chem. C 2019, 7, 13203–13210.

    Article  CAS  Google Scholar 

  25. Zhou, Y. L.; Liu, W.; Huang, X.; Zhang, A. H.; Zhang, Y.; Wang, Z. L. Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators. Nano Res. 2016, 9, 800–807.

    Article  CAS  Google Scholar 

  26. Zhu, Z.; Guan, J.; Tomanek, D. Structural transition in layered As1−xPx compounds: A computational study. Nano Lett. 2015, 15, 6042–6046.

    Article  CAS  Google Scholar 

  27. Xie, M. Q.; Zhang, S. L.; Cai, B.; Huang, Y.; Zou, Y. S.; Guo, B.; Gu, Y.; Zeng, H. B. A promising two-dimensional solar cell donor: Black arsenic-phosphorus monolayer with 1.54 eV direct bandgap and mobility exceeding 14,000 cm2·V−1·s−1. Nano Energy 2016, 28, 433–439.

    Article  CAS  Google Scholar 

  28. Yin, H. B.; Gao, J. W.; Zheng, G. P.; Wang, Y. X.; Ma, Y. C. Giant piezoelectric effects in monolayer group-V binary compounds with honeycomb phases: A first-principles prediction. J. Phys. Chem. C 2017, 121, 25576–25584.

    Article  CAS  Google Scholar 

  29. Guan, J.; Zhu, Z.; Tománek, D. Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study. Phys. Rev. Lett. 2014, 113, 046804.

    Article  CAS  Google Scholar 

  30. Zhang, S. L.; Xie, M. Q.; Li, F. Y.; Yan, Z.; Li, Y. F.; Kan, E. J.; Liu, W.; Chen, Z. F.; Zeng, H. B. Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities. Angew. Chem., Int. Ed. 2016, 55, 1666–1669.

    Article  CAS  Google Scholar 

  31. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  32. Blöchl, P. E. Projector-Augmented-Wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  33. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

    Article  CAS  Google Scholar 

  34. Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.

    Article  CAS  Google Scholar 

  35. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  36. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  CAS  Google Scholar 

  37. Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.

    Article  Google Scholar 

  38. Heyd, J.; Scuseria, G. E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 2004, 121, 1187–1192.

    Article  CAS  Google Scholar 

  39. Wu, X. F.; Vanderbilt, D.; Hamann, D. R. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. B: 2005, 72, 035105.

    Article  Google Scholar 

  40. Nunes, R. W.; Gonze, X. Berry-phase treatment of the homogeneous electric field perturbation in insulators. Phys. Rev. B 2001, 63, 155107.

    Article  Google Scholar 

  41. Xue, D. J.; Tan, J. H.; Hu, J. S.; Hu, W. P.; Guo, Y. G.; Wan, L. J. Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet. Adv. Mater. 2012, 24, 4528–4533.

    Article  CAS  Google Scholar 

  42. Singh, A. K.; Hennig, R. G. Computational prediction of two-dimensional group-IV mono-chalcogenides. Appl. Phys. Lett. 2014, 105, 042103.

    Article  Google Scholar 

  43. Wdowik, U. D.; Parlinski, K.; Rols, S.; Chatterji, T. Soft-phonon mediated structural phase transition in GeTe. Phys. Rev. B 2014, 89, 224306.

    Article  Google Scholar 

  44. Tung, Y. W.; Cohen, M. L. Relativistic band structure and electronic properties of SnTe, GeTe, and PbTe. Phys. Rev. 1969, 180, 823–826.

    Article  CAS  Google Scholar 

  45. Chattopadhyay, T.; Boucherle, J. X.; vonSchnering, H. G. Neutron diffraction study on the structural phase transition in GeTe. J. Phys. C Solid State Phys. 1987, 20, 1431–1440.

    Article  CAS  Google Scholar 

  46. Ji, Y. J.; Yang, M. Y.; Dong, H. L.; Hou, T. J.; Wang, L.; Li, Y. Y. Two-dimensional germanium monochalcogenide photocatalyst for water splitting under ultraviolet, visible to near-infrared light. Nanoscale 2017, 9, 8608–8615.

    Article  CAS  Google Scholar 

  47. Kamal, C.; Chakrabarti, A.; Ezawa, M. Direct band gaps in group IV-VI monolayer materials: Binary counterparts of phosphorene. Phys. Rev. B 2016, 93, 125428.

    Article  Google Scholar 

  48. Qiao, M.; Chen, Y. L.; Wang, Y.; Li, Y. F. The germanium telluride monolayer: A two dimensional semiconductor with high carrier mobility for photocatalytic water splitting. J. Mater. Chem. A 2018, 6, 4119–4125.

    Article  CAS  Google Scholar 

  49. Do, T. N.; Idrees, M.; Amin, B.; Hieu, N. N.; Phuc, H. V.; Hoa, L. T.; Nguyen, C. V. First principles study of structural, optoelectronic and photocatalytic properties of SnS, SnSe monolayers and their van der Waals heterostructure. Chem. Phys. 2020, 539, 110939.

    Article  CAS  Google Scholar 

  50. Sun, L. P.; Cui, Y.; Peng, L.; Du, J. Y.; Wang, S. F.; Huang, Y. C. Two-dimensional blue-phosphorene-phase germanium monochalcogenide photocatalysts for water splitting: From ultraviolet to visible absorption. J. Catal. 2019, 373, 67–74.

    Article  CAS  Google Scholar 

  51. Hu, T.; Dong, J. M. Two new phases of monolayer group-IV mono-chalcogenides and their piezoelectric properties. Phys. Chem. Chem. Phys. 2016, 18, 32514–32520.

    Article  CAS  Google Scholar 

  52. Ouyang, W. X.; Teng, F.; He, J. H.; Fang, X. S. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv. Funct. Mater. 2019, 29, 1807672.

    Article  Google Scholar 

  53. Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219–4227.

    Article  CAS  Google Scholar 

  54. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

    Article  CAS  Google Scholar 

  55. Xu, L.; Yang, M.; Wang, S. J.; Feng, Y. P. Electronic and optical properties of the monolayer group-IV monochalcogenides MX (M = Ge, Sn; X = S, Se, Te). Phys. Rev. B 2017, 95, 235434.

    Article  Google Scholar 

  56. Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Clarendon Press: Oxford, 1954.

    Google Scholar 

  57. Wang, J. J.; Meng, F. Y.; Ma, X. Q.; Xu, M. X.; Chen, L. Q. Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles. J. Appl. Phys. 2010, 108, 034107.

    Article  Google Scholar 

  58. Wu, Z. J.; Zhao, E. J.; Xiang, H. P.; Hao, X. F.; Liu, X. J.; Meng, J. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 2007, 76, 054115.

    Article  Google Scholar 

  59. Nye, J. F. Physical Properties of Crystals: Their Representation by Tensors and Matrices; Oxford: New York, 1985.

    Google Scholar 

  60. Zhu, Z.; Guan, J.; Liu, D.; Tománek, D. Designing isoelectronic counterparts to layered group V semiconductors. ACS Nano 2015, 9, 8284–8290.

    Article  CAS  Google Scholar 

  61. Zhu, Z.; Tománek, D. Semiconducting layered blue phosphorus: A computational study. Phys. Rev. Lett. 2014, 112, 176802.

    Article  Google Scholar 

  62. Lueng, C. M.; Chan, H. L. W.; Surya, C.; Choy, C. L. Piezoelectric coefficient of aluminum nitride and gallium nitride. J. Appl. Phys. 2000, 88, 5360–5363.

    Article  CAS  Google Scholar 

  63. Zhao, M. H.; Wang, Z. L.; Mao, S. X. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 2004, 4, 587–590.

    Article  CAS  Google Scholar 

  64. Bechmann, R. Elastic and piezoelectric constants of alpha-quartz. Phys. Rev. 1958, 110, 1060–1061.

    Article  Google Scholar 

  65. Arlı, C.; Kocabaş, T.; Çakr, D.; Sevik, C. A genuine correlation in piezoelectric properties of two-dimensional materials: A high-throughput computational study. 2020, arXiv: 2002.05803.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 1573002) and Natural Science Funds for Distinguished Young Scholar of Anhui Province (No. 1908085J08). The numerical calculations in this paper have done on the supercomputing system in the Supercomputing Center of University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucheng Huang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Zhang, X., Cui, Y. et al. Theoretical insights into strong intrinsic piezoelectricity of blue-phosphorus-like group-IV monochalcogenides. Nano Res. 15, 209–216 (2022). https://doi.org/10.1007/s12274-021-3460-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3460-6

Keywords

Navigation