Skip to main content
Log in

A new class of luminescent nanoprobes based on main-group Sb3+ emitters

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Inorganic luminescent nanocrystals (NCs) doped with main-group ns2-metal ions have evoked tremendous interest in many technological fields owing to their superior optical properties. Herein, we report a new class of luminescent nanoprobes based on 5s2-metal Sb3+-doped CaS NCs that are excitable by using a near ultraviolet light-emitting diode. The optical properties and excited-state dynamics of Sb3+ in CaS NCs are comprehensively surveyed through temperature-dependent steady-state and transient photoluminescence (PL) spectroscopies. Owing to the strong electron-phonon coupling of Sb3+ in CaS NCs, Sb3+ ions experience a dynamic Jahn-Taller distortion on the excited state, which results in bright green PL of Sb3+ with a broad emission band, a large Stokes shift, and a high PL quantum yield up to 17.3%. By taking advantage of the intense PL of Sb3+, we show in proof-of-concept experiments the application of biotinylated CaS:Sb3+ NCs as sensitive luminescent nanoprobes for biotin receptor-targeted cancer cell imaging and zebrafish imaging with a high imaging contrast. These findings provide fundamental insights into the excited-state dynamics of Sb3+ in CaS NCs, thus laying a foundation for future design of novel and versatile luminescent nanoprobes via main-group ns2-metal doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei, Y.; Xing, G. C.; Liu, K.; Li, G. G.; Dang, P. P.; Liang, S. S.; Liu, M.; Cheng, Z. Y.; Jin, D. Y.; Lin, J. New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization. Light: Sci. Appl. 2019, 8, 15.

    Article  Google Scholar 

  2. Jing, Y. Y.; Liu, Y.; Jiang, X. X.; Molokeev, M. S.; Lin, Z. S.; Xia, Z. G. Sb3+ dopant and halogen substitution triggered highly efficient and tunable emission in lead-free metal halide single crystals. Chem. Mater. 2020, 32, 5327–5334.

    Article  CAS  Google Scholar 

  3. Han, P. G.; Luo, C.; Yang, S. Q.; Yang, Y.; Deng, W. Q.; Han, K. All-inorganic lead-free 0D perovskites by a doping strategy to achieve a PLQY boost from < 2% to 90%. Angew. Chem., Int. Ed. 2020, 59, 12709–12713.

    Article  CAS  Google Scholar 

  4. Zeng, R. S; Zhang, L. L.; Xue, Y.; Ke, B.; Zhao, Z.; Huang, D.; Wei, Q. L.; Zhou, W. C.; Zou, B. S. Highly efficient blue emission from self-trapped excitons in stable Sb3+-doped Cs2NaInCl6 double perovskites. J. Phys. Chem. Lett. 2020, 11, 2053–2061.

    Article  CAS  Google Scholar 

  5. Zhao, H.; Chordiya, K.; Leukkunen, P.; Popov, A.; Kahaly, M. U.; Kordas, K.; Ojala, S. Dimethylammonium iodide stabilized bismuth halide perovskite photocatalyst for hydrogen evolution. Nano Res. 2021, 14, 1116–1125.

    Article  CAS  Google Scholar 

  6. Xiao, G.; Yan, B. B.; Luo, Y. H.; Wen, J. X.; Fan, D. S.; Fu, X. H.; Chu, Y. S.; Zhang, J. Z.; Peng, G. D. Co-doping effect of lead or erbium upon the spectroscopic properties of bismuth doped optical fibres. J. Lumin. 2021, 230, 117726.

    Article  CAS  Google Scholar 

  7. Oomen, E. W. J. L.; Smit, W. M. A.; Blasse, G. On the luminescence of Sb3+ in Cs2NaMCl6 (with M = Sc, Y, La): A model system for the study of trivalent s2 ions. J. Phys. C: Solid State Phys. 1986, 19, 3263–3272.

    Article  CAS  Google Scholar 

  8. Huang, P.; Zheng, W.; Gong, Z.; You, W.; Wei, J.; Chen, X. Rare earth ion- and transition metal ion-doped inorganic luminescent nanocrystals: From fundamentals to biodetection. Mater. Today Nano 2019, 5, 100031.

    Article  Google Scholar 

  9. Arfin, H.; Kshirsagar, A. S.; Kaur, J.; Mondal, B.; Xia, Z. G.; Chakraborty, S.; Nag, A. ns2 electron (Bi3+ and Sb3+) doping in lead-free metal halide perovskite derivatives. Chem. Mater. 2020, 32, 10255–10267.

    Article  CAS  Google Scholar 

  10. Marin, R.; Jaque, D. Doping lanthanide ions in colloidal semiconductor nanocrystals for brighter photoluminescence. Chem. Rev. 2021, 121, 1425–1462.

    Article  CAS  Google Scholar 

  11. Ren, J. J.; Zhou, X. P.; Wang, Y. H. Water triggered interfacial synthesis of highly luminescent CsPbX3:Mn2+ quantum dots from nonluminescent quantum dots. Nano Res. 2020, 13, 3387–3395.

    Article  CAS  Google Scholar 

  12. Xu, H. Y.; Yu, W. J.; Pan, K.; Wang, G. F.; Zhu, P. F. Confinement and antenna effect for ultrasmall Y2O3:Eu3+ nanocrystals supported by MOF with enhanced near-UV light absorption thereby enhanced luminescence and excellently multifunctional applications. Nano Res. 2021, 14, 720–729.

    Article  CAS  Google Scholar 

  13. Shi, H. L.; Han, D.; Chen, S. Y.; Du, M. H. Impact of metal ns2 lone pair on luminescence quantum efficiency in low-dimensional halide perovskites. Phys. Rev. Mater. 2019, 3, 034604.

    Article  Google Scholar 

  14. Zhou, J.; Rong, X. M.; Zhang, P.; Molokeev, M. S.; Wei, P. J.; Liu, Q. L.; Zhang, X. W.; Xia, Z. G. Manipulation of Bi3+/In3+ transmutation and Mn2+-doping effect on the structure and optical properties of double perovskite Cs2NaBi1−xInxCl6. Adv. Opt. Mater. 2019, 7, 1801435.

    Article  Google Scholar 

  15. Huang, D. Y.; Dang, P. P.; Wei, Y.; Bai, B.; Lian, H. Z.; Zeng, Q. G.; Lin, J. A deep-red-emitting Bi3+/Mn4+-doped CaLi6La2Nb2O12 phosphor: Luminescence and energy transfer properties. Mater. Res. Bull. 2020, 124, 110743.

    Article  CAS  Google Scholar 

  16. Li, G. G.; Lin, J. Recent progress in low-voltage cathodoluminescent materials: Synthesis, improvement and emission properties. Chem. Soc. Rev. 2014, 43, 7099–7131.

    Article  CAS  Google Scholar 

  17. Qi, Z. Y.; Fu, X. W.; Yang, T. F.; Li, D.; Fan, P.; Li, H. L.; Jiang, F.; Li, L. H.; Luo, Z. Y.; Zhuang, X. J. et al. Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. Nano Res. 2019, 12, 1894–1899.

    Article  CAS  Google Scholar 

  18. Tan, Z. F.; Chu, Y. M.; Chen, J. X.; Li, J. H.; Ji, G. Q.; Niu, G. D.; Gao, L.; Xiao, Z. W.; Tang, J. Lead-free perovskite variant solid solutions Cs2Sn1−xTexCl6: Bright luminescence and high anti-water stability. Adv. Mater. 2020, 32, 2002443.

    Article  CAS  Google Scholar 

  19. Dang, P. P.; Liu, D. J.; Li, G. G.; Kheraif, A. A. A.; Lin, J. Recent advances in bismuth ion-doped phosphor materials: Structure design, tunable photoluminescence properties, and application in white LEDs. Adv. Opt. Mater. 2020, 8, 1901993.

    Article  CAS  Google Scholar 

  20. Bednarkiewicz, A.; Marciniak, L.; Carlos, L. D.; Jaque, D. Standardizing luminescence nanothermometry for biomedical applications. Nanoscale 2020, 12, 14405–14421.

    Article  CAS  Google Scholar 

  21. Bi, H. T.; He, F.; Dong, Y. S.; Yang, D.; Dai, Y. L.; Xu, L. G.; Lv, R. C.; Gai, S. L.; Yang, P. P.; Lin, J. Bismuth nanoparticles with “light” property served as a multifunctional probe for X-ray computed tomography and fluorescence imaging. Chem. Mater. 2018, 30, 3301–3307.

    Article  CAS  Google Scholar 

  22. Zhou, Y. D.; Feng, W.; Qian, X. Q.; Yu, L. D.; Han, X. G.; Fan, G. L.; Chen, Y.; Zhu, J. Construction of 2D antimony(III) selenide nanosheets for highly efficient photonic cancer theranostics. ACS Appl. Mater. Interfaces 2019, 11, 19712–19723.

    Article  CAS  Google Scholar 

  23. Duo, Y. H.; Huang, Y. Y.; Liang, W. Y.; Yuan, R. M.; Li, Y.; Chen, T. F.; Zhang, H. Ultraeffective cancer therapy with an antimonene-based X-ray radiosensitizer. Adv. Funct. Mater. 2020, 30, 1906010.

    Article  CAS  Google Scholar 

  24. Shahbazi, M. A.; Faghfouri, L.; Ferreira, M. P. A.; Figueiredo, P.; Maleki, H.; Sefat, F.; Hirvonen, J.; Santos, H. A. The versatile biomedical applications of bismuth-based nanoparticles and composites: Therapeutic, diagnostic, biosensing, and regenerative properties. Chem. Soc. Rev. 2020, 49, 1253–1321.

    Article  CAS  Google Scholar 

  25. Yu, X. J.; Liu, X. Y.; Yang, K.; Chen, X. Y.; Li, W. W. Pnictogen semimetal (Sb, Bi)-based nanomaterials for cancer imaging and therapy: A materials perspective. ACS Nano 2021, 15, 2038–2067.

    Article  CAS  Google Scholar 

  26. Li, J.; Jiang, F.; Yang, B.; Song, X. R.; Liu, Y.; Yang, H. H.; Cao, D. R.; Shi, W. R.; Chen, G. N. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Sci. Rep. 2013, 3, 1998.

    Article  Google Scholar 

  27. Pham-Thi, M. Rare-earth calcium sulfide phosphors for cathode-ray tube displays. J. Alloys Compd. 1995, 225, 547–551.

    Article  CAS  Google Scholar 

  28. Sun, X. L.; Hong, G. Y.; Dong, X. Y.; Xiao, D.; Zhang, G. L.; Tang, G. Q.; Chen, W. J. Study of energy transfer between rare earth ions in CaS host by photoluminescence spectra. J. Phys. Chem. Solids 2001, 62, 807–810.

    Article  Google Scholar 

  29. Guo, C. F.; Huang, D. X.; Su, Q. Methods to improve the fluorescence intensity of CaS:Eu2+ red-emitting phosphor for white LED. Mater. Sci. Eng.: B 2006, 130, 189–193.

    Article  CAS  Google Scholar 

  30. Burbano, D. C. R.; Sharma, S. K.; Dorenbos, P.; Viana, B.; Capobianco, J. A. Persistent and photostimulated red emission in CaS:Eu2+, Dy3+ nanophosphors. Adv. Opt. Mater. 2015, 3, 551–557.

    Article  Google Scholar 

  31. Wang, J. K.; Zhu, Y. L.; Grimes, C. A.; Nie, Z.; Cai, Q. Y. Eu,Sm,Mn-doped CaS nanoparticles with 59.3% upconversion-luminescence quantum yield: Enabling ultrasensitive and facile smartphone-based sulfite detection. Anal. Chem. 2018, 90, 8658–8664.

    Article  CAS  Google Scholar 

  32. Wang, J. K.; He, N.; Zhu, Y. L.; An, Z. B.; Chen, P.; Grimes, C. A.; Nie, Z.; Cai, Q. Y. Highly-luminescent Eu,Sm,Mn-doped CaS up/down conversion nano-particles: Application to ultra-sensitive latent fingerprint detection and in vivo bioimaging. Chem. Commun. 2018, 54, 591–594.

    Article  CAS  Google Scholar 

  33. Yamashita, N. Luminescence centers of Ca (S:Se) phosphors activated with impurity ions having s2 configuration. I. Ca(S:Se):Sb3+ phosphors. J. Phys. Soc. Jpn. 1973, 35, 1089–1097.

    Article  CAS  Google Scholar 

  34. Zhang, M. S.; Zang, L. N. Rapid synthesis of CaS:Ce3+,Sb3+ phosphor with submicron-scale by microwave radiation method and its luminescence. Rare Metal Mat. Eng. 2002, 31, 69–72.

    Google Scholar 

  35. Smet, P. F.; Moreels, I.; Hens, Z.; Poelman, D. Luminescence in sulfides: A rich history and a bright future. Materials 2010, 3, 2834–2883.

    Article  CAS  Google Scholar 

  36. Raubach, C. W.; Gouveia, A. F.; de Santana, Y. V. B.; Varela, J. A.; Ferrer, M. M.; Li, M. S.; Longo, E. Towards controlled synthesis and better understanding of blue shift of the CaS crystals. J. Mater. Chem. C 2014, 2, 2743–2750.

    Article  CAS  Google Scholar 

  37. Zhang, M. R.; Zheng, W.; Liu, Y.; Huang, P.; Gong, Z. L.; Wei, J. J.; Gao, Y.; Zhou, S. Y.; Li, X. J.; Chen, X. Y. A new class of blue-LED-excitable NIR-II luminescent nanoprobes based on lanthanide-doped CaS nanoparticles. Angew. Chem., Int. Ed. 2019, 58, 9556–9560.

    Article  CAS  Google Scholar 

  38. Zhao, Y. M.; Rabouw, F. T.; van Puffelen, T.; van Walree, C. A.; Gamelin, D. R.; de Mello Donegá, C.; Meijerink, A. Lanthanide-doped CaS and SrS luminescent nanocrystals: A single-source precursor approach for doping. J. Am. Chem. Soc. 2014, 136, 16533–16543.

    Article  CAS  Google Scholar 

  39. Burbano, D. C. R.; Rodríguez, E. M.; Dorenbos, P.; Bettinelli, M.; Capobianco, J. A. The near-IR photo-stimulated luminescence of CaS:Eu2+/Dy3+ nanophosphors. J. Mater. Chem. C 2014, 2, 228–231.

    Article  Google Scholar 

  40. Gao, Y.; Li, R. F.; Zheng, W.; Shang, X. Y.; Wei, J. J.; Zhang, M. R.; Xu, J.; You, W. W.; Chen, Z.; Chen, X. Y. Broadband NIR photostimulated luminescence nanoprobes based on CaS:Eu2+,Sm3+ nanocrystals. Chem. Sci. 2019, 10, 5452–5460.

    Article  CAS  Google Scholar 

  41. Virdi, G. S.; Singh, N.; Nath, N. Photoluminescence of ion-implanted phosphors. Pramana 1988, 31, 309–312.

    Article  CAS  Google Scholar 

  42. Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. J.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139, 3275–3282.

    Article  CAS  Google Scholar 

  43. Chen, B.; Wang, F. Combating concentration quenching in upconversion nanoparticles. Acc. Chem. Res. 2020, 53, 358–367.

    Article  CAS  Google Scholar 

  44. Asano, S.; Yamashita, N. Luminescence of Sb3+ centers in MgS phosphors. J. Phys. Soc. Jpn. 1980, 49, 2231–2235.

    Article  CAS  Google Scholar 

  45. Donker, H.; Yamashita, N.; Smit, W. M. A.; Blasse, G. Luminescence decay times of the Sb3+, Pb2+, and Bi3+ ions in alkaline-earth sulfides. Phys. Status Solidi (B) 1989, 156, 537–544.

    Article  CAS  Google Scholar 

  46. Yamashita, N.; Sasaki, Y. I.; Nakamura, K. Photoluminescence of Sb3+ centers in SrS and SrSe. Jpn. J. Appl. Phys. 1992, 31, 2791–2797.

    Article  CAS  Google Scholar 

  47. He, Z. Y.; Wang, Y. S.; Sun, L.; Xu, X. R. Optical absorption studies on the trapping states of CaS:Eu,Sm. J. Phys.: Condens. Matter 2001, 13, 3665–3675.

    CAS  Google Scholar 

  48. Oomen, E. W. J. L.; Smit, W. M. A.; Blasse, S. G. Jahn-Teller effect in the Sb3+ emission in zircon-structured phosphates. Chem. Phys. Lett. 1984, 112, 547–550.

    Article  CAS  Google Scholar 

  49. Weidner, M.; Osvet, A.; Schierning, G.; Batentschuka, M.; Winnackera, A. Influence of dopant compounds on the storage mechanism of CaS:Eu2+,Sm3+. J. Appl. Phys. 2006, 100, 073701.

    Article  Google Scholar 

  50. Huang, B. L. Native point defects in CaS: Focus on intrinsic defects and rare earth ion dopant levels for up-converted persistent luminescence. Inorg. Chem. 2015, 54, 11423–11440.

    Article  CAS  Google Scholar 

  51. Li, Z. J.; Huang, L.; Zhang, Y. W.; Zhao, Y.; Yang, H.; Han, G. Near-infrared light activated persistent luminescence nanoparticles via upconversion. Nano Res. 2017, 10, 1840–1846.

    Article  CAS  Google Scholar 

  52. Miyakawa, T.; Dexter, D. L. Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Phys. Rev. B 1970, 1, 2961.

    Article  Google Scholar 

  53. Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

    Article  CAS  Google Scholar 

  54. Zhang, W.; Wei, J. J.; Gong, Z. L.; Huang, P.; Xu, J.; Li, R. F.; Yu, S. H.; Cheng, X. W.; Zheng, W.; Chen, X. Y. Unveiling the excited-state dynamics of Mn2+ in 0D Cs4PbCl6 perovskite nanocrystals. Adv. Sci. 2020, 7, 2002210.

    Article  CAS  Google Scholar 

  55. Stadler, W.; Hofmann, D. M.; Alt, H. C.; Muschik, T.; Meyer, B. K.; Weigel, E.; Müller-Vogt, G.; Salk, M.; Rupp, E.; Benz, K. W. Optical investigations of defects in Cd1−xZnxTe. Phys. Rev. B 1995, 51, 10619–10630.

    Article  CAS  Google Scholar 

  56. Ellervee, A. F. Luminescence of Pb2+ and Bi3+ centres in alkali-earth sulphides and oxides. Phys. Status Solidi (B) 1977, 82, 91–98.

    Article  CAS  Google Scholar 

  57. Chen, S. Y.; Zhao, X. R.; Chen, J. Y.; Chen, J.; Kuznetsova, L.; Wong, S. S.; Ojima, I. Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptor-mediated endocytosis and drug release. Bioconjug Chem. 2010, 21, 979–987.

    Article  Google Scholar 

  58. Wei, J. J.; Lian, W.; Zheng, W.; Shang, X. Y.; Zhang, M. R.; Dai, T.; Chen, X. Y. Sub-10 nm lanthanide-doped SrFCl nanoprobes: Controlled synthesis, optical properties and bioimaging. J. Rare Earths 2019, 37, 691–698.

    Article  CAS  Google Scholar 

  59. Wei, J. J.; Zheng, W.; Shang, X. Y.; Li, R. F.; Huang, P.; Liu, Y.; Gong, Z. L.; Zhou, S. Y.; Chen, Z.; Chen, X. Y. Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing. Sci. China Mater. 2019, 62, 130–137.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Science and Technology Cooperation Fund between Chinese and Australian Governments (No. 2017YFE0132300), the Strategic Priority Research Program of the CAS (No. XDB20000000), the National Natural Science Foundation of China (Nos. 11774345, 12074379, 21771185, 21875250, and 11904365), the CAS/SAFEA International Partnership Program for Creative Research Teams, Natural Science Foundation of Fujian Province (No. 2020I0037), and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (No. 2021ZR125).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zheng or Xueyuan Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, M., Zheng, W. et al. A new class of luminescent nanoprobes based on main-group Sb3+ emitters. Nano Res. 15, 179–185 (2022). https://doi.org/10.1007/s12274-021-3454-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3454-4

Keywords

Navigation