Skip to main content

Fundamental principles and development of proximity-field nanopatterning toward advanced 3D nanofabrication


Three-dimensional (3D) nanoarchitectures have offered unprecedented material performances in diverse applications like energy storages, catalysts, electronic, mechanical, and photonic devices. These outstanding performances are attributed to unusual material properties at the nanoscale, enormous surface areas, a geometrical uniqueness, and comparable feature sizes with optical wavelengths. For the practical use of the unusual nanoscale properties, there have been developments for macroscale fabrications of the 3D nanoarchitectures with process areas over centimeter scales. Among the many fabrication methods for 3D structures at the nanoscale, proximity-field nanopatterning (PnP) is one of the promising techniques that generates 3D optical holographic images and transforms them into material structures through a lithographic process. Using conformal and transparent phase masks as a key factor, the PnP process has advantages in terms of stability, uniformity, and reproducibility for 3D nanostructures with periods from 300 nm to several micrometers. Other merits of realizing precise 3D features with sub-100 nm and rapid processes are attributed to the interference of coherent light diffracted by phase masks. In this review, to report the overall progress of PnP from 2003, we present a comprehensive understanding of PnP, including its brief history, the fundamental principles, symmetry control of 3D nanoarchitectures, material issues for the phase masks, and the process area expansion to the wafer-scale for the target applications. Finally, technical challenges and prospects are discussed for further development and practical applications of the PnP technique.


  1. [1]

    Hariharan, P. Basics of Interferometry; Elsevier: Amsterdam, 2010.

    Google Scholar 

  2. [2]

    Vargas, J.; Quiroga, J. A.; Belenguer, T. Phase-shifting interferometry based on principal component analysis. Opt. Lett. 2011, 36, 1326–1328.

    CAS  Article  Google Scholar 

  3. [3]

    Yashiro, W.; Takeda, Y.; Momose, A. Efficiency of capturing a phase image using cone-beam X-ray Talbot interferometry. J. Opt. Soc. Am. A 2008, 25, 2025–2039.

    CAS  Article  Google Scholar 

  4. [4]

    Wyrowski, F. Diffractive optical elements: Iterative calculation of quantized, blazed phase structures. J. Opt. Soc. Am. A 1990, 7, 961–969.

    CAS  Article  Google Scholar 

  5. [5]

    Antoniades, M. A.; Eleftheriades, G. V. A broadband series power divider using zero-degree metamaterial phase-shifting lines. IEEE Microw. Wirel. Compon. Lett. 2005, 15, 808–810.

    Article  Google Scholar 

  6. [6]

    Dolling, G.; Enkrich, C.; Wegener, M.; Soukoulis, C. M.; Linden, S. Simultaneous negative phase and group velocity of light in a metamaterial. Science 2006, 312, 892–894.

    CAS  Article  Google Scholar 

  7. [7]

    Larouche, S.; Tsai, Y. J.; Tyler, T.; Jokerst, N. M.; Smith, D. R. Infrared metamaterial phase holograms. Nat. Mater. 2012, 11, 450–454.

    CAS  Article  Google Scholar 

  8. [8]

    Zhu, R.; Liu, X. N.; Hu, G. K.; Sun, C. T.; Huang, G. L. Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nat. Commun. 2014, 5, 5510.

    CAS  Article  Google Scholar 

  9. [9]

    Campbell, M.; Sharp, D. N.; Harrison, M. T.; Denning, R. G.; Turberfield, A. J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 2000, 404, 53–56.

    CAS  Article  Google Scholar 

  10. [10]

    Liebmann, L. W.; Bukofsky, S. J.; Graur, I. Generating mask patterns for alternating phase-shift mask lithography. U.S. Patent 7475380, January 6, 2009.

  11. [11]

    Perlitz, S.; Buttgereit, U.; Scherübl, T.; Seidel, D.; Lee, K. M.; Tavassoli, M. Novel solution for in-die phase control under scanner equivalent optical settings for 45-nm node and below. In Proceedings of SPIE 6607, Photomask and Next-Generation Lithography Mask Technology XIV, Yokohama, Japan, 2007, p 66070Z.

  12. [12]

    Tritchkov, A.; Jeong, S.; Kenyon, C. Lithography enabling for the 65 nm node gate layer patterning with alternating PSM. In Proceedings of SPIE 6607, Optical Microlithography XVIII, San Jose, California, USA, 2005, pp 215–225.

  13. [13]

    Levenson, M. D.; Viswanathan, N. S.; Simpson, R. A. Improving resolution in photolithography with a phase-shifting mask. IEEE Trans. Electron Devices 1982, 29, 1828–1836.

    Article  Google Scholar 

  14. [14]

    Wong, A. K. K. Resolution Enhancement Techniques in Optical Lithography; SPIE Press: Bellingham, 2001.

    Book  Google Scholar 

  15. [15]

    Weichelt, T.; Vogler, U.; Stuerzebecher, L.; Voelkel, R.; Zeitner, U. D. Resolution enhancement for advanced mask aligner lithography using phase-shifting photomasks. Opt. Express 2014, 22, 16310–16321.

    CAS  Article  Google Scholar 

  16. [16]

    Odom, T. W.; Love, J. C.; Wolfe, D. B.; Paul, K. E.; Whitesides, G. M. Improved pattern transfer in soft lithography using composite stamps. Langmuir 2002, 18, 5314–5320.

    CAS  Article  Google Scholar 

  17. [17]

    Xia, Y. N.; Whitesides, G. M. Soft lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184.

    CAS  Article  Google Scholar 

  18. [18]

    Qin, D.; Xia, Y. N.; Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 2010, 5, 491–502.

    CAS  Article  Google Scholar 

  19. [19]

    Jeon, S.; Menard, E.; Park, J. U.; Maria, J.; Meitl, M.; Zaumseil, J.; Rogers, J. A. Three-dimensional nanofabrication with rubber stamps and conformable photomasks. Adv. Mater. 2004, 16, 1369–1373.

    CAS  Article  Google Scholar 

  20. [20]

    Rogers, J. A.; Paul, K. E.; Jackman, R. J.; Whitesides, G. M. Generating ∼ 90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask. J. Vac. Sci. Technol. B 1998, 16, 59–68.

    CAS  Article  Google Scholar 

  21. [21]

    Rogers, J. A.; Paul, K. E.; Jackman, R. J.; Whitesides, G. M. Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field. Appl. Phys. Lett. 1997, 70, 2658–2660.

    CAS  Article  Google Scholar 

  22. [22]

    Aizenberg, J.; Rogers, J. A.; Paul, K. E.; Whitesides, G. M. Imaging profiles of light intensity in the near field: Applications to phase-shift photolithography. Appl. Opt. 1998, 37, 2145–2152.

    CAS  Article  Google Scholar 

  23. [23]

    Maria, J.; Jeon, S.; Rogers, J. A. Nanopatterning with conformable phase masks. J. Photochem. Photobiol. A 2004, 166, 149–154.

    CAS  Article  Google Scholar 

  24. [24]

    Aizenberg, J.; Rogers, J. A.; Paul, K. E.; Whitesides, G. M. Imaging the irradiance distribution in the optical near field. Appl. Phys. Lett. 1997, 71, 3773–3775.

    CAS  Article  Google Scholar 

  25. [25]

    Wang, F.; Horn, M. W.; Lakhtakia, A. Rigorous electromagnetic modeling of near-field phase-shifting contact lithography. Microelectron. Eng. 2004, 71, 34–53.

    CAS  Article  Google Scholar 

  26. [26]

    Li, Z. Y.; Yin, Y. D.; Xia, Y. N. Optimization of elastomeric phase masks for near-field photolithography. Appl. Phys. Lett. 2001, 78, 2431–2433.

    CAS  Article  Google Scholar 

  27. [27]

    Jeon, S.; Park, J. U.; Cirelli, R.; Yang, S.; Heitzman, C. E.; Braun, P. V.; Kenis, P. J. A.; Rogers, J. A. Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks. Proc. Natl. Acad. Sci. USA 2004, 101, 12428–12433.

    CAS  Article  Google Scholar 

  28. [28]

    Shir, D. J.; Jeon, S.; Liao, H. W.; Highland, M.; Cahill, D. G.; Su, M. F.; El-Kady, I. F.; Christodoulou, C. G.; Bogart, G. R.; Hamza, A. V. et al. Three-dimensional nanofabrication with elastomeric phase masks. J. Phys. Chem. B 2007, 111, 12945–12958.

    CAS  Article  Google Scholar 

  29. [29]

    Park, J. Y.; Jeon, S. W. Large-Area, Three-dimensional nanopatterning with conformal phase masks. Polym. Sci. Technol. 2013, 24, 517–527.

    CAS  Google Scholar 

  30. [30]

    Ahn, C.; Park, J.; Cho, D.; Hyun, G.; Ham, Y.; Kim, K.; Nam, S. H.; Bae, G.; Lee, K.; Shim, Y. S. et al. High-performance functional nanocomposites using 3D ordered and continuous nanostructures generated from proximity-field nanopatterning. Funct. Compos. Struct. 2019, 1, 032002.

    CAS  Article  Google Scholar 

  31. [31]

    Hua, F.; Sun, Y. G.; Gaur, A.; Meitl, M. A.; Bilhaut, L.; Rotkina, L.; Wang, J. F.; Geil, P.; Shim, M.; Rogers, J. A. et al. Polymer imprint lithography with molecular-scale resolution. Nano Lett. 2004, 4, 2467–2471.

    CAS  Article  Google Scholar 

  32. [32]

    Zhang, J.; Tan, K. L.; Gong, H. Q. Characterization of the polymerization of SU-8 photoresist and its applications in microelectro-mechanical systems (MEMS). Polym. Test. 2001, 20, 693–701.

    CAS  Article  Google Scholar 

  33. [33]

    Lin, C. H.; Lee, G. B.; Chang, B. W.; Chang, G. L. A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist. J. Micromech. Microeng. 2002, 12, 590.

    CAS  Article  Google Scholar 

  34. [34]

    Conradie, E. H.; Moore, D. F. SU-8 thick photoresist processing as a functional material for MEMS applications. J. Micromech. Microeng. 2002, 12, 368.

    CAS  Article  Google Scholar 

  35. [35]

    Rayleigh, L. XXV. On copying diffraction-gratings, and on some phenomena connected therewith. London Edinburgh Dublin Philos. Mag. J. Sci. 1881, 11, 196–205.

    Article  Google Scholar 

  36. [36]

    Talbot, H. F. LXXVI. Facts relating to optical science. No. IV. London Edinburgh Dublin Philos. Mag. J. Sci. 1836, 9, 401–407.

    Article  Google Scholar 

  37. [37]

    Sato, T. Talbot effect immersion lithography by self-imaging of very fine grating patterns. J. Vac. Sci. Technol. B 2012, 30, 06FG02.

    Article  CAS  Google Scholar 

  38. [38]

    Wen, J. M.; Zhang, Y.; Xiao, M. The Talbot effect: Recent advances in classical optics, nonlinear optics, and quantum optics. Adv. Opt. Photonics 2013, 5, 83–130.

    Article  CAS  Google Scholar 

  39. [39]

    Park, J.; Kim, K. I.; Kim, K.; Kim, D. C.; Cho, D.; Lee, J. H.; Jeon, S. Rapid, high-resolution 3D interference printing of multilevel ultralong nanochannel arrays for high-throughput nanofluidic transport. Adv. Mater. 2015, 27, 8000–8006.

    CAS  Article  Google Scholar 

  40. [40]

    Park, J.; Wang, S. D.; Li, M.; Ahn, C.; Hyun, J. K.; Kim, D. S.; Kim, D. K.; Rogers, J. A.; Huang, Y. G.; Jeon, S. Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nat. Commun. 2012, 3, 916.

    Article  CAS  Google Scholar 

  41. [41]

    Hyun, J. K.; Park, J.; Kim, E.; Lauhon, L. J.; Jeon, S. Rational control of diffraction and interference from conformal phase gratings: Toward high-resolution 3D nanopatterning. Adv. Opt. Mater. 2014, 2, 1213–1220.

    CAS  Article  Google Scholar 

  42. [42]

    Shir, D.; Liao, H. W.; Jeon, S.; Xiao, D.; Johnson, H. T.; Bogart, G. R.; Bogart, K. H. A.; Rogers, J. A. Three-dimensional nanostructures formed by single step, two-photon exposures through elastomeric Penrose quasicrystal phase masks. Nano Lett. 2008, 8, 2236–2244.

    CAS  Article  Google Scholar 

  43. [43]

    Nam, S. H.; Park, J.; Jeon, S. Rapid and large-scale fabrication of full color woodpile photonic crystals via interference from a conformal multilevel phase mask. Adv. Funct. Mater. 2019, 29, 1904971.

    CAS  Article  Google Scholar 

  44. [44]

    Jeon, S.; Malyarchuk, V.; Rogers, J. A.; Wiederrecht, G. P. Fabricating three dimensional nanostructures using two photon lithography in a single exposure step. Opt. Express 2006, 14, 2300–2308.

    Article  Google Scholar 

  45. [45]

    Jeon, S.; Shir, D. J.; Nam, Y. S.; Nidetz, R.; Highland, M.; Cahill, D. G.; Rogers, J. A.; Su, M. F.; El-Kady, I. F.; Christodoulou, C. G. et al. Molded transparent photopolymers and phase shift optics for fabricating three dimensional nanostructures. Opt. Express 2007, 15, 6358–6366.

    CAS  Article  Google Scholar 

  46. [46]

    Park, J.; Park, J. H.; Kim, E.; Ahn, C. W.; Jang, H. I.; Rogers, J. A.; Jeon, S. Conformable solid-index phase masks composed of high-aspect-ratio micropillar arrays and their application to 3D Nanopatterning. Adv. Mater. 2011, 23, 860–864.

    CAS  Article  Google Scholar 

  47. [47]

    del Campo, A.; Greiner, C. SU-8: A photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng. 2007, 17, R81.

    CAS  Article  Google Scholar 

  48. [48]

    Lee, J. B.; Choi, K. H.; Yoo, K. Innovative SU-8 lithography techniques and their applications. Micromachines 2015, 6, 1–18.

    Article  Google Scholar 

  49. [49]

    Moon, J. H.; Yang, S. Chemical aspects of three-dimensional photonic crystals. Chem. Rev. 2010, 110, 547–574.

    CAS  Article  Google Scholar 

  50. [50]

    Moon, J. H.; Yang, S. Creating three-dimensional polymeric microstructures by multi-beam interference lithography. J. Macromol. Sci. Part C 2005, 45, 351–373.

    Article  CAS  Google Scholar 

  51. [51]

    Moon, J. H.; Ford, J.; Yang, S. Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography. Polym. Adv. Technol. 2006, 17, 83–93.

    CAS  Article  Google Scholar 

  52. [52]

    Hayek, A.; Xu, Y. A.; Okada, T.; Barlow, S.; Zhu, X. L.; Moon, J. H.; Marder, S. R.; Yang, S. Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography. J. Mater. Chem. 2008, 18, 3316–3318.

    CAS  Article  Google Scholar 

  53. [53]

    Cho, D.; Park, J.; Kim, J.; Kim, T.; Kim, J.; Park, I.; Jeon, S. Three-dimensional continuous conductive nanostructure for highly sensitive and stretchable strain sensor. ACS Appl. Mater. Interfaces 2017, 9, 17369–17378.

    CAS  Article  Google Scholar 

  54. [54]

    Jang, J. H.; Jhaveri, S. J.; Rasin, B.; Koh, C. Y.; Ober, C. K.; Thomas, E. L. Three-dimensionally-patterned submicrometer-scale hydrogel/air networks that offer a new platform for biomedical applications. Nano Lett. 2008, 8, 1456–1460.

    CAS  Article  Google Scholar 

  55. [55]

    Jang, J. H.; Dendukuri, D.; Hatton, T. A.; Thomas, E. L.; Doyle, P. S. A route to three-dimensional structures in a microfluidic device: Stop-flow interference lithography. Angew. Chem., Int. Ed. 2007, 119, 9185–9189.

    Article  Google Scholar 

  56. [56]

    Moon, J. H.; Seo, J. S.; Xu, Y. A.; Yang, S. Direct fabrication of 3D silica-like microstructures from epoxy-functionalized polyhedral oligomeric silsesquioxane (POSS). J. Mater. Chem. 2009, 19, 4687–4691.

    CAS  Article  Google Scholar 

  57. [57]

    George, M. C.; Nelson, E. C.; Rogers, J. A.; Braun, P. V. Direct fabrication of 3D periodic inorganic microstructures using conformal phase masks. Angew. Chem., Int. Ed. 2008, 121, 150–154.

    Article  Google Scholar 

  58. [58]

    Park, J.; Seo, J.; Jung, H. K.; Hyun, G.; Park, S. Y.; Jeon, S. Direct optical fabrication of fluorescent, multilevel 3D nanostructures for highly efficient chemosensing platforms. Adv. Funct. Mater. 2016, 26, 7170–7177.

    CAS  Article  Google Scholar 

  59. [59]

    Ahn, C.; Park, J.; Kim, D.; Jeon, S. Monolithic 3D titania with ultrathin nanoshell structures for enhanced photocatalytic activity and recyclability. Nanoscale 2013, 5, 10384–10389.

    CAS  Article  Google Scholar 

  60. [60]

    Hyun, G.; Song, J. T.; Ahn, C.; Ham, Y.; Cho, D.; Oh, J.; Jeon, S. Hierarchically porous Au nanostructures with interconnected channels for efficient mass transport in electrocatalytic CO2 reduction. Proc. Natl. Acad. Sci. USA 2020, 117, 5680–5685.

    CAS  Article  Google Scholar 

  61. [61]

    Ahn, J.; Ahn, C.; Jeon, S.; Park, J. Atomic layer deposition of inorganic thin films on 3D polymer nanonetworks. Appl. Sci. 2019, 9, 1990.

    CAS  Article  Google Scholar 

  62. [62]

    Ahn, J.; Hong, S.; Shim, Y. S.; Park, J. Electroplated functional materials with 3D nanostructures defined by advanced optical lithography and their emerging applications. Appl. Sci. 2020, 10, 8780.

    CAS  Article  Google Scholar 

  63. [63]

    Novak, T. G.; Kim, K.; Jeon, S. 2D and 3D nanostructuring strategies for thermoelectric materials. Nanoscale 2019, 11, 19684–19699.

    CAS  Article  Google Scholar 

  64. [64]

    Cho, D.; Park, J.; Kim, T.; Jeon, S. Recent advances in lithographic fabrication of micro-/nanostructured polydimethylsiloxanes and their soft electronic applications. J. Semicond. 2019, 40, 111605.

    CAS  Article  Google Scholar 

  65. [65]

    Lee, K.; Yoon, H.; Ahn, C.; Park, J.; Jeon, S. Strategies to improve the photocatalytic activity of TiO2: 3D nanostructuring and heterostructuring with graphitic carbon nanomaterials. Nanoscale 2019, 11, 7025–7040.

    CAS  Article  Google Scholar 

  66. [66]

    Ahn, C.; Park, J.; Jeon, S. Recent advances in high-performance functional ceramics using 3D nanostructuring techniques. Ceramist 2019, 22, 230–242.

    Article  Google Scholar 

  67. [67]

    Moharam, M. G.; Gaylord, T. K. Rigorous coupled-wave analysis of grating diffraction—E-mode polarization and losses. J. Opt. Soc. Am. 1983, 73, 451–455.

    Article  Google Scholar 

  68. [68]

    Moharam, M. G.; Grann, E. B.; Pommet, D. A.; Gaylord, T. K. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 1995, 12, 1068–1076.

    Article  Google Scholar 

  69. [69]

    Klein, W. R. Theoretical efficiency of Bragg devices. Proc. IEEE 1966, 54, 803–804.

    Article  Google Scholar 

  70. [70]

    Sullivan, D. M. Electromagnetic Simulation Using the FDTD Method, 2nd ed.; John Wiley & Sons: Hoboken, 2013.

    Book  Google Scholar 

  71. [71]

    Maria, J.; Malyarchuk, V.; White, J.; Rogers, J. A. Experimental and computational studies of phase shift lithography with binary elastomeric masks. J. Vac. Sci. Technol. B 2006, 24, 828–835.

    CAS  Article  Google Scholar 

  72. [72]

    Pouya, C.; Stavenga, D. G.; Vukusic, P. Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus. Opt. Express 2011, 19, 11355–11364.

    CAS  Article  Google Scholar 

  73. [73]

    Bietsch, A.; Michel, B. Conformal contact and pattern stability of stamps used for soft lithography. J. Appl. Phys. 2000, 88, 4310–4318.

    CAS  Article  Google Scholar 

  74. [74]

    Schmid, H.; Michel, B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 2000, 33, 3042–3049.

    CAS  Article  Google Scholar 

  75. [75]

    Truong, T. T.; Lin, R. S.; Jeon, S.; Lee, H. H.; Maria, J.; Gaur, A.; Hua, F.; Meinel, I.; Rogers, J. A. Soft lithography using acryloxy perfluoropolyether composite stamps. Langmuir 2007, 23, 2898–2905.

    CAS  Article  Google Scholar 

  76. [76]

    Guo, L. J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 2007, 19, 495–513.

    CAS  Article  Google Scholar 

  77. [77]

    Hui, C. Y.; Jagota, A.; Lin, Y. Y.; Kramer, E. J. Constraints on microcontact printing imposed by stamp deformation. Langmuir 2002, 18, 1394–1407.

    CAS  Article  Google Scholar 

  78. [78]

    Zhang, Y.; Lo, C. W.; Taylor, J. A.; Yang, S. Replica molding of high-aspect-ratio polymeric nanopillar arrays with high fidelity. Langmuir 2006, 22, 8595–8601.

    CAS  Article  Google Scholar 

  79. [79]

    Kwon, Y. W.; Park, J.; Kim, T.; Kang, S. H.; Kim, H.; Shin, J.; Jeon, S.; Hong, S. W. Flexible near-field nanopatterning with ultrathin, conformal phase masks on nonplanar substrates for biomimetic hierarchical photonic structures. ACS Nano 2016, 10, 4609–4617.

    CAS  Article  Google Scholar 

  80. [80]

    Park, J.; Tahk, D.; Ahn, C.; Im, S. G.; Choi, S. J.; Suh, K. Y.; Jeon, S. Conformal phase masks made of polyurethane acrylate with optimized elastic modulus for 3D nanopatterning. J. Mater. Chem. C 2014, 2, 2316–2322.

    CAS  Article  Google Scholar 

  81. [81]

    Kim, P.; Suh, K. Y. Rigiflex, spontaneously wettable polymeric mold for forming reversibly bonded nanocapillaries. Langmuir 2007, 23, 4549–4553.

    CAS  Article  Google Scholar 

  82. [82]

    Ministry of Technology. Adhesion Fundamentals and Practice; Macharen and Sons Ltd: London, 19

    Google Scholar 

  83. [83]

    Hong, S.; Park, J.; Jeon, S. G.; Kim, K.; Park, S. H.; Shin, H. S.; Kim, B.; Jeon, S.; Song, J. Y. Monolithic Bi1.5Sb0.5Te3 ternary alloys with a periodic 3D nanostructure for enhancing thermoelectric performance. J. Mater. Chem. C 2017, 5, 8974–8980.

    Article  Google Scholar 

  84. [84]

    Cho, S.; Ahn, C.; Park, J.; Jeon, S. 3D nanostructured N-doped TiO2 photocatalysts with enhanced visible absorption. Nanoscale 2018, 10, 9747–9751.

    CAS  Article  Google Scholar 

  85. [85]

    Yoon, H.; Lee, K.; Kim, H.; Park, M.; Novak, T. G.; Hyun, G.; Jeong, M. S.; Jeon, S. Highly efficient UV-visible photocatalyst from monolithic 3D titania/graphene quantum dot heterostructure linked by aminosilane. Adv. Sustain. Syst. 2019, 3, 1900084.

    CAS  Article  Google Scholar 

  86. [86]

    Cho, D.; Suh, J. M.; Nam, S. H.; Park, S. Y.; Park, M.; Lee, T. H.; Choi, K. S.; Lee, J.; Ahn, C.; Jang, H. W. Optically activated 3D thin-shell TiO2 for super-sensitive chemoresistive responses: Toward visible light activation. Adv. Sci. 2021, 8, 2001883.

    CAS  Article  Google Scholar 

  87. [87]

    Kim, K.; Park, J.; Hong, S.; Park, S. H.; Jeon, S. G.; Ahn, C.; Song, J. Y.; Jeon, S. Anomalous thermoelectricity of pure ZnO from 3D continuous ultrathin nanoshell structures. Nanoscale 2018, 10, 3046–3052.

    CAS  Article  Google Scholar 

  88. [88]

    Tiwari, A. P.; Lee, K.; Kim, K.; Kim, J.; Novak, T. G.; Jeon, S. Conformally coated nickel phosphide on 3D, ordered nanoporous nickel for highly active and durable hydrogen evolution. ACS Sustainable Chem. Eng. 2020, 8, 17116–17123.

    CAS  Article  Google Scholar 

  89. [89]

    Kim, H.; Yun, S.; Kim, K.; Kim, W.; Ryu, J.; Nam, H. G.; Han, S. M.; Jeon, S.; Hong, S. Breaking the elastic limit of piezoelectric ceramics using nanostructures: A case study using ZnO. Nano Energy 2020, 78, 105259.

    CAS  Article  Google Scholar 

  90. [90]

    Kim, K.; Tiwari, A. P.; Hyun, G.; Novak, T. G.; Jeon, S. Improving electrochemical active area of MoS2 via attached on 3D-ordered structures for hydrogen evolution reaction. Int. J. Hydrog. Energy 2019, 44, 28143–28150.

    CAS  Article  Google Scholar 

  91. [91]

    Kuk, S. K.; Ham, Y.; Gopinath, K.; Boonmongkolras, P.; Lee, Y.; Lee, Y. W.; Kondaveeti, S.; Ahn, C.; Shin, B.; Lee, J. K. et al. Continuous 3D titanium nitride nanoshell structure for solar-driven unbiased biocatalytic CO2 reduction. Adv. Energy Mater. 2019, 9, 1900029.

    Article  CAS  Google Scholar 

  92. [92]

    Hyun, G.; Cho, S. H.; Park, J.; Kim, K.; Ahn, C.; Tiwari, A. P.; Kim, I. D.; Jeon, S. 3D ordered carbon/SnO2 hybrid nanostructures for energy storage applications. Electrochim. Acta 2018, 288, 108–114.

    CAS  Article  Google Scholar 

  93. [93]

    Kim, S.; Ahn, C.; Cho, Y.; Hyun, G.; Jeon, S.; Park, J. H. Suppressing buoyant force: New avenue for long-term durability of oxygen evolution catalysts. Nano Energy 2018, 54, 184–191.

    CAS  Article  Google Scholar 

  94. [94]

    Kim, K; Tiwari, A. P.; Novak, T. G.; Jeon, S. 3D ordered nanoelectrodes for energy conversion applications: Thermoelectric, piezoelectric, and electrocatalytic applications. J. Korean Ceram. Soc., in press, DOI:

  95. [95]

    Cho, D.; Shim, Y. S.; Jung, J. W.; Nam, S. H.; Min, S.; Lee, S. E.; Ham, Y.; Lee, K.; Park, J.; Shin, J. et al. High-contrast optical modulation from strain-induced nanogaps at 3D heterogeneous interfaces. Adv. Sci. 2020, 7, 1903708.

    CAS  Article  Google Scholar 

  96. [96]

    Ahn, C.; Kim, S. M.; Jung, J. W.; Park, J.; Kim, T.; Lee, S. E.; Jang, D.; Hong, J. W.; Han, S. M.; Jeon, S. Multifunctional polymer nanocomposites reinforced by 3D continuous ceramic nanofillers. ACS Nano 2018, 12, 9126–9133.

    CAS  Article  Google Scholar 

  97. [97]

    Araki, S.; Ishikawa, Y.; Wang, X. D. F.; Uenuma, M.; Cho, D.; Jeon, S.; Uraoka, Y. Fabrication of nanoshell-based 3D periodic structures by templating process using solution-derived ZnO. Nanoscale Res. Lett. 2017, 12, 419.

    Article  CAS  Google Scholar 

  98. [98]

    Na, Y. E.; Shin, D.; Kim, K.; Ahn, C.; Jeon, S.; Jang, D. Emergence of new density-strength scaling law in 3D hollow ceramic nanoarchitectures. Small 2018, 14, 1802239.

    Article  CAS  Google Scholar 

  99. [99]

    Bae, G.; Choi, G. M.; Ahn, C.; Kim, S. M.; Kim, W.; Choi, Y.; Park, D.; Jang, D.; Hong, J. W.; Han, S. M. et al. Flexible protective film: Ultrahard, yet flexible hybrid nanocomposite reinforced by 3D inorganic nanoshell structures. Adv. Funct. Mater., in press, DOI:

  100. [100]

    Bae, G.; Jang, D.; Jeon, S. Scalable fabrication of high-performance thin-shell oxide nanoarchitected materials via proximity-field nanopatterning. ACS Nano, in press, DOI:

  101. [101]

    Kim, T.; Park, J.; Sohn, J.; Cho, D.; Jeon, S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano 2016, 10, 4770–4778.

    CAS  Article  Google Scholar 

  102. [102]

    Cho, D.; Jang, J. S.; Nam, S. H.; Ko, K.; Hwang, W.; Jung, J. W.; Lee, J.; Choi, M.; Hong, J. W.; Kim, I. D. Focused electric-field polymer writing: Toward ultralarge, multistimuli-responsive membranes. ACS Nano 2020, 14, 12173–12183.

    CAS  Article  Google Scholar 

  103. [103]

    Chen, H. M.; Jing, Y.; Lee, J. H.; Liu, D.; Kim, J.; Chen, S.; Huang, K.; Shen, X.; Zheng, Q. B.; Yang, J. L. et al. Human skin-inspired integrated multidimensional sensors based on highly anisotropic structures. Mater. Horiz. 2020, 7, 2378–2389.

    CAS  Article  Google Scholar 

  104. [104]

    Jang, H. I.; Ko, S.; Park, J.; Lee, D. E.; Jeon, S.; Ahn, C. W.; Yoo, K. S.; Park, J. H. Reversible creation of nanostructures between identical or different species of materials. Appl. Phys. A 2012, 108, 41–52.

    CAS  Article  Google Scholar 

  105. [105]

    Montoya, J. C.; Chang, C. H.; Heilmann, R. K.; Schattenburg, M. L. Doppler writing and linewidth control for scanning beam interference lithography. J. Vac. Sci. Technol. B 2005, 23, 2640–2645.

    CAS  Article  Google Scholar 

  106. [106]

    Yuan, L.; Herman, P. R. Laser scanning holographic lithography for flexible 3D fabrication of multi-scale integrated nano-structures and optical biosensors. Sci. Rep. 2016, 6, 22294.

    CAS  Article  Google Scholar 

  107. [107]

    Chen, I. T.; Schappell, E.; Zhang, X. L.; Chang, C. H. Continuous roll-to-roll patterning of three-dimensional periodic nanostructures. Microsyst. Nanoeng. 2020, 6, 22.

    CAS  Article  Google Scholar 

  108. [108]

    Jeon, S.; Nam, Y. S.; Shir, D. J. L.; Rogers, J. A.; Hamza, A. Three dimensional nanoporous density graded materials formed by optical exposures through conformable phase masks. Appl. Phys. Lett. 2006, 89, 253101.

    Article  CAS  Google Scholar 

  109. [109]

    Nam, Y. S.; Jeon, S.; Shir, D. J. L.; Hamza, A.; Rogers, J. A. Thick, three-dimensional nanoporous density-graded materials formed by optical exposures of photopolymers with controlled levels of absorption. Appl. Opt. 2007, 46, 6350–6354.

    Article  Google Scholar 

  110. [110]

    Zhou, H.; Ye, Q.; Xu, J. W. Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Mater. Chem. Front. 2017, 1, 212–230.

    CAS  Article  Google Scholar 

  111. [111]

    Rinne, J. W.; Gupta, S.; Wiltzius, P. Inverse design for phase mask lithography. Opt. Express 2008, 16, 663–670.

    Article  Google Scholar 

  112. [112]

    Rolland, J. P.; Hagberg, E. C.; Denison, G. M.; Carter, K. R.; De Simone, J. M. High-resolution soft lithography: Enabling materials for nanotechnologies. Angew. Chem., Int. Ed. 2004, 43, 5796–5799.

    CAS  Article  Google Scholar 

  113. [113]

    Ahn, J.; Ahn, J.; Park, J. 3D-ordered porous composite microparticles formed via substrate-free optical 3D lithography. Funct. Compos. Struct. 2020, 2, 045007.

    CAS  Article  Google Scholar 

  114. [114]

    Matsukawa, K.; Watanabe, M.; Hamada, T.; Nagase, T.; Naito, H. Polysilsesquioxanes for gate-insulating materials of organic thin-film transistors. Int. J. Polym. Sci. 2012, 2012, 852063.

    Article  CAS  Google Scholar 

Download references


This research was supported by Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (No. 2020M3D1A1110522).

Author information



Corresponding authors

Correspondence to Junyong Park or Seokwoo Jeon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nam, SH., Hyun, G., Cho, D. et al. Fundamental principles and development of proximity-field nanopatterning toward advanced 3D nanofabrication. Nano Res. 14, 2965–2980 (2021).

Download citation


  • proximity-field nanopatterning
  • three-dimensional (3D) nanostructures
  • phase mask
  • interference lithography