Skip to main content
Log in

Silica-coating-assisted nitridation of TiO2 nanoparticles and their photothermal property

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoparticles of refractory compounds represent a class of stable materials showing a great promise to support localized surface plasmon resonances (LSPRs) in both visible and near infrared (NIR) spectral regions. It is still challenging to rationally tune the LSPR band because of the difficulty to control the density of charge carriers in individual refractory nanoparticles and maintain the dispersity of nanoparticles in the processes of synthesis and applications. In this work, controlled chemical transformation of titanium dioxide (TiO2) nanoparticles encapsulated with mesoporous silica (SiO2) shells to titanium nitride (TiN) via nitridation reaction at elevated temperatures is developed to tune the density of free electrons in the resulting titanium-oxide-nitride (TiOxNy) nanoparticles. Such tunability enables a flexibility to support LSPR-based optical absorption in the synthesized TiOxNy@SiO2 core-shell nanoparticles across both the visible and NIR regions. The silica shells play a crucial role in preventing the sintering of TiOxNy nanoparticles in the nitridation reaction and maintaining the stability of TiOxNy nanoparticles in applications. The LSPR-based broadband absorption of light in the TiOxNy@SiO2 nanoparticles exhibits strong photothermal effect with photo-to-thermal conversion efficiency as high as ~ 76%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.

    Article  CAS  Google Scholar 

  2. Ray, P. C. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem. Rev. 2010, 110, 5332–5365.

    Article  CAS  Google Scholar 

  3. Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L. M.; Wang, X. Y.; Tao, Y. Q.; Huang, A. J. Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018, 359, 679–684.

    Article  CAS  Google Scholar 

  4. Liu, J. N.; Pan, L. M.; Shang, C. F.; Lu, B.; Wu, R. J.; Feng, Y.; Chen, W. Y.; Zhang, R. W.; Bu, J. W.; Xiong, Z. Q. et al. A highly sensitive and selective nanosensor for near-infrared potassium imaging. Sci. Adv. 2020, 6, eaax9757.

    Article  CAS  Google Scholar 

  5. Gupta, N.; Chan, Y. H.; Saha, S.; Liu, M. H. Recent development in near-infrared photothermal therapy based on semiconducting polymer dots. ACS Appl. Polym. Mater. 2020, 2, 4195–4221.

    Article  CAS  Google Scholar 

  6. Chen, J. Y.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M. X.; Gidding, M.; Welch, M. J.; Xia, Y. N. Gold nanocages as photothermal transducers for cancer treatment. Small 2010, 6, 811–817.

    Article  CAS  Google Scholar 

  7. Wang, Y. C.; Black, K. C. L.; Luehmann, H.; Li, W. Y.; Zhang, Y.; Cai, X.; Wan, D. H.; Liu, S. Y.; Li, M.; Kim, P. et al. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 2013, 7, 2068–2077.

    Article  CAS  Google Scholar 

  8. Reddy, H.; Guler, U.; Kudyshev, Z.; Kildishev, A. V.; Shalaev, V. M.; Boltasseva, A. Temperature-dependent optical properties of plasmonic titanium nitride thin films. ACS Photonics 2017, 4, 1413–1420.

    Article  CAS  Google Scholar 

  9. Xing, Y.; Tang, S. S.; Du, X.; Xu, T. L.; Zhang, X. J. Near-infrared light-driven yolk@shell carbon@silica nanomotors for fuel-free triglyceride degradation. Nano Res. 2021, 14, 654–659.

    Article  CAS  Google Scholar 

  10. Chen, Y. C.; Hsu, Y. K.; Popescu, R.; Gerthsen, D.; Lin, Y. G.; Feldmann, C. Au@Nb@HxK1−xNbO3 nanopeapods with near-infrared active plasmonic hot-electron injection for water splitting. Nat. Commun. 2018, 9, 232.

    Article  CAS  Google Scholar 

  11. Appleyard, P. G. Infrared extinction performance of high aspect ratio carbon nanoparticles. J. Opt. A: Pure Appl. Opt. 2006, 8, 101–113.

    Article  CAS  Google Scholar 

  12. Dai, L. W.; Song, L. P.; Huang, Y. J.; Zhang, L.; Lu, X. F.; Zhang, J. W.; Chen, T. Bimetallic Au/Ag core-shell superstructures with tunable surface plasmon resonance in the near-infrared region and high performance surface-enhanced raman scattering. Langmuir 2017, 33, 5378–5384.

    Article  CAS  Google Scholar 

  13. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248.

    Article  CAS  Google Scholar 

  14. Chang, H. H.; Murphy, C. J. Mini gold nanorods with tunable plasmonic peaks beyond 1000 nm. Chem. Mater. 2018, 30, 1427–1435.

    Article  CAS  Google Scholar 

  15. Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225.

    Article  CAS  Google Scholar 

  16. Radloff, C.; Halas, N. J. Plasmonic properties of concentric nanoshells. Nano Lett. 2004, 4, 1323–1327.

    Article  CAS  Google Scholar 

  17. Kumar, M.; Umezawa, N.; Ishii, S.; Nagao, T. Examining the performance of refractory conductive ceramics as plasmonic materials: A theoretical approach. ACS Photonics 2016, 3, 43–50.

    Article  CAS  Google Scholar 

  18. Mohsen, A. A.; Zahran, M.; Habib, S. E. D.; Allam, N. K. Refractory plasmonics enabling 20% efficient lead-free perovskite solar cells. Sci. Rep. 2020, 10, 6732.

    Article  CAS  Google Scholar 

  19. Xian, Y. H.; Cai, Y.; Sun, X. Y.; Liu, X. F.; Guo, Q. B.; Zhang, Z. X.; Tong, L. M.; Qiu, J. R. Refractory plasmonic metal nitride nanoparticles for broadband near-infrared optical switches. Laser Photonics Rev. 2019, 13, 1900029.

    Article  CAS  Google Scholar 

  20. Li, W.; Guler, U.; Kinsey, N.; Naik, G. V.; Boltasseva, A.; Guan, J. G.; Shalaev, V. M.; Kildishev, A. V. Refractory plasmonics with titanium nitride: Broadband metamaterial absorber. Adv. Mater. 2014, 26, 7959–7965.

    Article  CAS  Google Scholar 

  21. Naldoni, A.; Guler, U.; Wang, Z. X.; Marelli, M.; Malara, F.; Meng, X. G.; Besteiro, L. V.; Govorov, A. O.; Kildishev, A. V.; Boltasseva, A. et al. Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Adv. Opt. Mater. 2017, 5, 1601031.

    Article  CAS  Google Scholar 

  22. Zeng, Q. Y.; Bai, J.; Li, J. H.; Zhou, B. X.; Sun, Y. G. A low-cost photoelectrochemical tandem cell for highly-stable and efficient solar water splitting. Nano Energy 2017, 41, 225–232.

    Article  CAS  Google Scholar 

  23. Manthiram, K.; Alivisatos, A. P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 2012, 134, 3995–3998.

    Article  CAS  Google Scholar 

  24. Lin, L. N.; Feng, X. Y.; Lan, D. P.; Chen, Y.; Zhong, Q. L.; Liu, C.; Cheng, Y.; Qi, R. J.; Ge, J. P.; Yu, C. Z. et al. Coupling effect of Au nanoparticles with the oxygen vacancies of TiO2−x for enhanced charge transfer. J. Phys. Chem. C 2020, 124, 23823–23831.

    Article  CAS  Google Scholar 

  25. Wang, Q.; Brier, M.; Joshi, S.; Puntambekar, A.; Chakrapani, V. Defect-induced Burstein-Moss shift in reduced V2O5 nanostructures. Phys. Rev. B 2016, 94, 245305.

    Article  Google Scholar 

  26. Li, Y. H.; Chen, X.; Zhang, M. J.; Zhu, Y. M.; Ren, W. J.; Mei, Z. W.; Gu, M.; Pan, F. Oxygen vacancy-rich MoO3−x nanobelts for photocatalytic N2 reduction to NH3 in pure water. Catal. Sci. Technol. 2019, 9, 803–810.

    Article  CAS  Google Scholar 

  27. Li, X. D.; Wang, D. Y.; Zhang, Y.; Liu, L. T.; Wang, W. S. Surface-ligand protected reduction on plasmonic tuning of one-dimensional MoO3−x nanobelts for solar steam generation. Nano Res. 2020, 13, 3025–3032.

    Article  CAS  Google Scholar 

  28. Ye, X. C.; Reifsnyder Hickey, D.; Fei, J. Y.; Diroll, B. T.; Paik, T.; Chen, J.; Murray, C. B. Seeded growth of metal-doped plasmonic oxide heterodimer nanocrystals and their chemical transformation. J. Am. Chem. Soc. 2014, 136, 5106–5115.

    Article  CAS  Google Scholar 

  29. Staller, C. M.; Gibbs, S. L.; Saez Cabezas, C. A.; Milliron, D. J. Quantitative analysis of extinction coefficients of tin-doped indium oxide nanocrystal ensembles. Nano Lett. 2019, 19, 8149–8154.

    Article  CAS  Google Scholar 

  30. Howell, I. R.; Giroire, B.; Garcia, A.; Li, S.; Aymonier, C.; Watkins, J. J. Fabrication of plasmonic TiN nanostructures by nitridation of nanoimprinted TiO2 nanoparticles. J. Mater. Chem. C 2018, 6, 1399–1406.

    Article  CAS  Google Scholar 

  31. Li, C. C.; Shi, J. J.; Zhu, L.; Zhao, Y. Y.; Lu, J.; Xu, L. Q. Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries. Nano Res. 2018, 11, 4302–4312.

    Article  CAS  Google Scholar 

  32. Zukalova, M.; Prochazka, J.; Bastl, Z.; Duchoslav, J.; Rubacek, L.; Havlicek, D.; Kavan, L. Facile conversion of electrospun TiO2 into titanium nitride/oxynitride fibers. Chem. Mater. 2010, 22, 4045–4055.

    Article  CAS  Google Scholar 

  33. Dong, S. M.; Chen, X.; Gu, L.; Zhou, X. H.; Xu, H. X.; Wang, H. B.; Liu, Z. H.; Han, P. X.; Yao, J. H.; Wang, L. et al. Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage. ACS Appl. Mater. Interfaces 2011, 3, 93–98.

    Article  CAS  Google Scholar 

  34. Kan, X. Q.; Deng, C. J.; Yu, C.; Ding, J.; Zhu, H. X. Synthesis, electrochemical and photoluminescence properties of titanium nitride nanoparticles. J. Mater. Sci.: Mater. Electron. 2018, 29, 10624–10630.

    CAS  Google Scholar 

  35. Sjöberg, J.; Pompe, R. Nitridation of amorphous silica with ammonia. J. Am. Ceram. Soc. 1992, 75, 2189–2193.

    Article  Google Scholar 

  36. Kirchhof, J.; Unger, S.; Dellith, J.; Scheffel, A. Diffusion in binary TiO2-SiO2 glasses. Opt. Mater. Express 2014, 4, 672–680.

    Article  CAS  Google Scholar 

  37. Zhang, Z. Z.; Luo, Z. S.; Yang, Z. P.; Zhang, S. Y.; Zhang, Y.; Zhou, Y. G.; Wang, X. X.; Fu, X. Z. Band-gap tuning of N-doped TiO2 photocatalysts for visible-light-driven selective oxidation of alcohols to aldehydes in water. RSC Adv. 2013, 3, 7215–7218.

    Article  CAS  Google Scholar 

  38. Fletcher, A. N. Molecular structure of ethanol-d1 solutions. Near-infrared study of hydrogen bonding. J. Phys. Chem. 1972, 76, 2562–2571.

    Article  CAS  Google Scholar 

  39. Gschwend, P. M.; Conti, S.; Kaech, A.; Maake, C.; Pratsinis, S. E. Silica-coated TiN particles for killing cancer cells. ACS Appl. Mater. Interfaces 2019, 11, 22550–22560.

    Article  CAS  Google Scholar 

  40. Kaskel, S.; Schlichte, K.; Chaplais, G.; Khanna, M. Synthesis and characterisation of titanium nitride based nanoparticles. J. Mater. Chem. 2003, 13, 1496–1499.

    Article  CAS  Google Scholar 

  41. Kim, I. S.; Kumta, P. N. Hydrazide sol-gel synthesis of nanostructured titanium nitride: Precursor chemistry and phase evolution. J. Mater. Chem. 2003, 13, 2028–2035.

    Article  CAS  Google Scholar 

  42. Hu, J. Q.; Lu, Q. Y.; Tang, K. B.; Yu, S. H.; Qian, Y. T.; Zhou, G. E.; Liu, X. M. Low-temperature synthesis of nanocrystalline titanium nitride via a benzene-thermal route. J. Am. Ceram. Soc. 2000, 83, 430–432.

    Article  CAS  Google Scholar 

  43. Joshi, U. A.; Chung, S. H.; Lee, J. S. Low-temperature, solvent-free solid-state synthesis of single-crystalline titanium nitride nanorods with different aspect ratios. J. Solid State Chem. 2005, 178, 755–760.

    Article  CAS  Google Scholar 

  44. Yang, X. G.; Li, C.; Yang, L. H.; Yan, Y.; Qian, Y. T. Reduction-nitridation synthesis of titanium nitride nanocrystals. J. Am. Ceram. Soc. 2003, 86, 206–208.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was funded by the department of the Army Basic Research Program through the Edgewood Chemical and Biological Center, U.S. Army Research Office (No. W911NF-15-2-0052). Partial characterizations were performed using the facilities hosted in the Temple Materials Institute (TMI), Temple University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Lung Dai or Yugang Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Kuhn, D.L., Zander, Z. et al. Silica-coating-assisted nitridation of TiO2 nanoparticles and their photothermal property. Nano Res. 14, 3228–3233 (2021). https://doi.org/10.1007/s12274-021-3427-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3427-7

Keywords

Navigation