Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Nano Research
  3. Article
On-surface activation of benzylic C-H bonds for the synthesis of pentagon-fused graphene nanoribbons
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Tuning the morphology of chevron-type graphene nanoribbons by choice of annealing temperature

19 July 2018

Yun Cao, Jing Qi, … Hong-Jun Gao

Steering on-surface reactions through molecular steric hindrance and molecule-substrate van der Waals interactions

09 December 2022

Shiyong Wang, Tomohiko Nishiuchi, … Roman Fasel

Oxygen-promoted synthesis of armchair graphene nanoribbons on Cu(111)

01 March 2021

Penghui Ji, Oliver MacLean, … Lifeng Chi

Chevron-type graphene nanoribbons with a reduced energy band gap: Solution synthesis, scanning tunneling microscopy and electrical characterization

28 May 2020

Ximeng Liu, Gang Li, … Alexander Sinitskii

Layer-by-Layer Assembly of Metal-Organic Frameworks Based on Carboxylated Perylene on Template Monolayers of Graphene Oxide

01 November 2018

A. K. Reshetnikova, A. I. Zvyagina, … M. A. Kalinina

On-surface synthesis and edge states of NBN-doped zigzag graphene nanoribbons

26 March 2023

Xiao Chang, Li Huang, … Hong-Jun Gao

Selective coupling reaction inhibits graphene defects: regulating the orderly precipitation of carbon atoms

09 August 2019

Duosheng Li, Wei Zou, … Dunwen Zuo

Molecular heterostructure by fusing graphene nanoribbons of different lengths through a pentagon ring junction

20 June 2022

Qiang Sun, Hao Jiang, … Pascal Ruffieux

Energy band engineering via “Bite” defect located on N = 8 armchair graphene nanoribbons

09 July 2021

Shijie Sun, Yurou Guan, … Jinming Cai

Download PDF
  • Research Article
  • Open Access
  • Published: 23 April 2021

On-surface activation of benzylic C-H bonds for the synthesis of pentagon-fused graphene nanoribbons

  • Xiushang Xu1,3 na1,
  • Marco Di Giovannantonio2 na1 nAff5,
  • José I. Urgel2 nAff6,
  • Carlo A. Pignedoli2,
  • Pascal Ruffieux2,
  • Klaus Müllen1,4,
  • Roman Fasel2 &
  • …
  • Akimitsu Narita1,3 

Nano Research volume 14, pages 4754–4759 (2021)Cite this article

  • 832 Accesses

  • 9 Citations

  • 11 Altmetric

  • Metrics details

Abstract

Graphene nanoribbons (GNRs) have potential for applications in electronic devices. A key issue, thereby, is the fine-tuning of their electronic characteristics, which can be achieved through subtle structural modifications. These are not limited to the conventional armchair, zigzag, and cove edges, but also possible through incorporation of non-hexagonal rings. On-surface synthesis enables the fabrication and visualization of GNRs with atomically precise chemical structures, but strategies for the incorporation of non-hexagonal rings have been underexplored. Herein, we describe the on-surface synthesis of armchair-edged GNRs with incorporated five-membered rings through the C-H activation and cyclization of benzylic methyl groups. Ortho-Tolyl-substituted dibromobianthryl was employed as the precursor monomer, and visualization of the resulting structures after annealing at 300 °C on a gold surface by high-resolution noncontact atomic force microscopy clearly revealed the formation of methylene-bridged pentagons at the GNR edges. These persisted after annealing at 340 °C, along with a few fully conjugated pentagons having singly-hydrogenated apexes. The benzylic methyl groups could also migrate or cleave-off, resulting in defects lacking the five-membered rings. Moreover, unexpected and unique structural rearrangements, including the formation of embedded heptagons, were observed. Despite the coexistence of different reaction pathways that hamper selective synthesis of a uniform structure, our results provide novel insights into on-surface reactions en route to functional, non-benzenoid carbon nanomaterials.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Yano, Y.; Mitoma, N.; Ito, H.; Itami, K. A quest for structurally uniform graphene nanoribbons: Synthesis, properties, and applications. J. Org. Chem. 2020, 85, 4–33.

    Article  CAS  Google Scholar 

  2. Narita, A.; Wang, X. Y.; Feng, X. L.; Müllen, K. New advances in nanographene chemistry. Chem. Soc. Rev. 2015, 44, 6616–6643.

    Article  CAS  Google Scholar 

  3. Xu, X. S.; Müllen, K.; Narita, A. Syntheses and characterizations of functional polycyclic aromatic hydrocarbons and graphene nanoribbons. Bull. Chem. Soc. Jpn. 2020, 93, 490–506.

    Article  CAS  Google Scholar 

  4. Chen, Z. P.; Narita, A.; Müllen, K. Graphene nanoribbons: On-surface synthesis and integration into electronic devices. Adv. Mater. 2020, 32, 2001893.

    Article  CAS  Google Scholar 

  5. Clair, S.; de Oteyza, D. G. Controlling a chemical coupling reaction on a surface: Tools and strategies for on-surface synthesis. Chem. Rev. 2019, 119, 4717–4776.

    Article  CAS  Google Scholar 

  6. Dong, L.; Liu, P. N.; Lin, N. Surface-activated coupling reactions confined on a surface. Acc. Chem. Res. 2015, 48, 2765–2774.

    Article  CAS  Google Scholar 

  7. Niu, T. C.; Zhang, J. L.; Chen, W. Atomic mechanism for the growth of wafer-scale single-crystal graphene: Theoretical perspective and scanning tunneling microscopy investigations. 2D Mater. 2017, 4, 042002.

    Article  Google Scholar 

  8. Shen, Q.; Gao, H. Y.; Fuchs, H. Frontiers of on-surface synthesis: From principles to applications. Nano Today 2017, 13, 77–96.

    Article  CAS  Google Scholar 

  9. Gross, L.; Schuler, B.; Pavliček, N.; Fatayer, S.; Majzik, Z.; Moll, N.; Peña, D.; Meyer, G. Atomic force microscopy for molecular structure elucidation. Angew. Chem., Int. Ed. 2018, 57, 3888–3908.

    Article  CAS  Google Scholar 

  10. Zhou, X. H.; Yu, G. Modified engineering of graphene nanoribbons prepared via on-surface synthesis. Adv. Mater. 2020, 32, 1905957.

    Article  CAS  Google Scholar 

  11. Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

    Article  CAS  Google Scholar 

  12. Zhang, H. M.; Lin, H. P.; Sun, K. W.; Chen, L.; Zagranyarski, Y.; Aghdassi, N.; Duhm, S.; Li, Q.; Zhong, D. Y.; Li, Y. Y. et al. On-surface synthesis of rylene-type graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 4022–4025.

    Article  CAS  Google Scholar 

  13. Denk, R.; Hohage, M.; Zeppenfeld, P.; Cai, J. M.; Pignedoli, C. A.; Söde, H.; Fasel, R.; Feng, X. L.; Müllen, K.; Wang, S. D. et al. Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Nat. Commun. 2014, 5, 4253.

    Article  CAS  Google Scholar 

  14. Basagni, A.; Sedona, F.; Pignedoli, C. A.; Cattelan, M.; Nicolas, L.; Casarin, M.; Sambi, M. Molecules-oligomers-nanowires-graphene nanoribbons: A bottom-up stepwise on-surface covalent synthesis preserving long-range order. J. Am. Chem. Soc. 2015, 137, 1802–1808.

    Article  CAS  Google Scholar 

  15. Talirz, L.; Söde, H.; Dumslaff, T.; Wang, S. Y.; Sanchez-Valencia, J. R.; Liu, J.; Shinde, P.; Pignedoli, C. A.; Liang, L. B.; Meunier, V. et al. On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons. ACS Nano 2017, 11, 1380–1388.

    Article  CAS  Google Scholar 

  16. Chen, Y. C.; de Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 2013, 7, 6123–6128.

    Article  CAS  Google Scholar 

  17. Abdurakhmanova, N.; Amsharov, N.; Stepanow, S.; Jansen, M.; Kern, K.; Amsharov, K. Synthesis of wide atomically precise graphene nanoribbons from para-oligophenylene based molecular precursor. Carbon 2014, 77, 1187–1190.

    Article  CAS  Google Scholar 

  18. Sun, K. W.; Ji, P. H.; Zhang, J. J.; Wang, J. X.; Li, X. C.; Xu, X.; Zhang, H. M.; Chi, L. F. On-surface synthesis of 8-and 10-armchair graphene nanoribbons. Small 2019, 15, 1804526.

    Article  Google Scholar 

  19. Yamaguchi, J.; Hayashi, H.; Jippo, H.; Shiotari, A.; Ohtomo, M.; Sakakura, M.; Hieda, N.; Aratani, N.; Ohfuchi, M.; Sugimoto, Y. et al. Small bandgap in atomically precise 17-atom-wide armchair-edged graphene nanoribbons. Comms. Mater. 2020, 1, 36.

    Article  Google Scholar 

  20. Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.

    Article  CAS  Google Scholar 

  21. Costa, P. S.; Teeter, J. D.; Enders, A.; Sinitskii, A. Chevron-based graphene nanoribbon heterojunctions: Localized effects of lateral extension and structural defects on electronic properties. Carbon 2018, 134, 310–315.

    Article  CAS  Google Scholar 

  22. Han, P.; Akagi, K.; Federici Canova, F.; Mutoh, H.; Shiraki, S.; Iwaya, K.; Weiss, P. S.; Asao, N.; Hitosugi, T. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 2014, 8, 9181–9187.

    Article  CAS  Google Scholar 

  23. Miao, D. D.; Daigle, M.; Lucotti, A.; Boismenu-Lavoie, J.; Tommasini, M.; Morin, J. F. Toward thiophene-annulated graphene nanoribbons. Angew. Chem., Int. Ed. 2018, 57, 3588–3592.

    Article  CAS  Google Scholar 

  24. Wang, X. Y.; Urgel, J. I.; Barin, G. B.; Eimre, K.; Di Giovannantonio, M.; Milani, A.; Tommasini, M.; Pignedoli, C. A.; Ruffieux, P.; Feng, X. L. et al. Bottom-up synthesis of heteroatom-doped chiral graphene nanoribbons. J. Am. Chem. Soc. 2018, 140, 9104–9107.

    Article  CAS  Google Scholar 

  25. Kawai, S.; Saito, S.; Osumi, S.; Yamaguchi, S.; Foster, A. S.; Spijker, P.; Meyer, E. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 2015, 6, 8098.

    Article  CAS  Google Scholar 

  26. Cloke, R. R.; Marangoni, T.; Nguyen, G. D.; Joshi, T.; Rizzo, D. J.; Bronner, C.; Cao, T.; Louie, S. G.; Crommie, M. F.; Fischer, F. R. Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 8872–8875.

    Article  CAS  Google Scholar 

  27. Kawai, S.; Nakatsuka, S.; Hatakeyama, T.; Pawlak, R.; Meier, T.; Tracey, J.; Meyer, E.; Foster, A. S. Multiple heteroatom substitution to graphene nanoribbon. Sci. Adv. 2018, 4, eaar7181.

  28. Bronner, C.; Stremlau, S.; Gille, M.; Brauße, F.; Haase, A.; Hecht, S.; Tegeder, P. Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem., Int. Ed. 2013, 52, 4422–4425.

    Article  CAS  Google Scholar 

  29. Zhang, Y. F.; Zhang, Y.; Li, G.; Lu, J. C.; Que, Y. D.; Chen, H.; Berger, R.; Feng, X. L.; Müllen, K.; Lin, X. et al. Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps. Nano Res. 2017, 10, 3377–3384.

    Article  CAS  Google Scholar 

  30. Durr, R. A.; Haberer, D.; Lee, Y. L.; Blackwell, R.; Kalayjian, A. M.; Marangoni, T.; Ihm, J.; Louie, S. G.; Fischer, F. R. Orbitally matched edge-doping in graphene nanoribbons. J. Am. Chem. Soc. 2018, 140, 807–813.

    Article  CAS  Google Scholar 

  31. Nguyen, G. D.; Toma, F. M.; Cao, T.; Pedramrazi, Z.; Chen, C.; Rizzo, D. J.; Joshi, T.; Bronner, C.; Chen, Y. C.; Favaro, M. et al. Bottom-up synthesis of N = 13 sulfur-doped graphene nanoribbons. J. Phys. Chem. C 2016, 120, 2684–2687.

    Article  CAS  Google Scholar 

  32. Moreno, C.; Paradinas, M.; Vilas-Varela, M.; Panighel, M.; Ceballos, G.; Peña, D.; Mugarza, A. On-surface synthesis of superlattice arrays of ultra-long graphene nanoribbons. Chem. Commun. 2018, 54, 9402–9405.

    Article  CAS  Google Scholar 

  33. Moreno, C.; Vilas-Varela, M.; Kretz, B.; Garcia-Lekue, A.; Costache, M. V.; Paradinas, M.; Panighel, M.; Ceballos, G.; Valenzuela, S. O.; Peña, D. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 2018, 360, 199–203.

    Article  CAS  Google Scholar 

  34. Fan, Q. T.; Martin-Jimenez, D.; Ebeling, D.; Krug, C. K.; Brechmann, L.; Kohlmeyer, C.; Hilt, G.; Hieringer, W.; Schirmeisen, A.; Gottfried, J. M. Nanoribbons with nonalternant topology from fusion of polyazulene: Carbon allotropes beyond graphene. J. Am. Chem. Soc. 2019, 141, 17713–17720.

    Article  CAS  Google Scholar 

  35. Di Giovannantonio, M.; Urgel, J. I.; Beser, U.; Yakutovich, A. V.; Wilhelm, J.; Pignedoli, C. A.; Ruffieux, P.; Narita, A.; Müllen, K.; Fasel, R. On-surface synthesis of indenofluorene polymers by oxidative five-membered ring formation. J. Am. Chem. Soc. 2018, 140, 3532–3536.

    Article  CAS  Google Scholar 

  36. Di Giovannantonio, M.; Eimre, K.; Yakutovich, A. V.; Chen, Q.; Mishra, S.; Urgel, J. I.; Pignedoli, C. A.; Ruffieux, P.; Müllen, K.; Narita, A. et al. On-surface synthesis of antiaromatic and open-shell indeno [2,1-b] fluorene polymers and their lateral fusion into porous ribbons. J. Am. Chem. Soc. 2019, 141, 12346–12354.

    Article  CAS  Google Scholar 

  37. Di Giovannantonio, M.; Chen, Q.; Urgel, J. I.; Ruffieux, P.; Pignedoli, C. A.; Müllen, K.; Narita, A.; Fasel, R. On-surface synthesis of oligo (indenoindene). J. Am. Chem. Soc. 2020, 142, 12925–12929.

    Article  CAS  Google Scholar 

  38. Yazaki, R.; Ohshima, T. Recent strategic advances for the activation of benzylic C-H bonds for the formation of C-C bonds. Tetrahedron Lett. 2019, 60, 151225.

    Article  Google Scholar 

  39. Xue, X. S.; Ji, P. J.; Zhou, B. Y.; Cheng, J. P. The essential role of bond energetics in C-H activation/functionalization. Chem. Rev. 2017, 117, 8622–8648.

    Article  CAS  Google Scholar 

  40. Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 2009, 325, 1110–1114.

    Article  CAS  Google Scholar 

  41. Betancourt, S. S.; Johansen, Y. B.; Forsythe, J. C.; Rinna, J.; Christoffersen, K.; Skillingstad, P.; Achourov, V.; Canas, J.; Chen, L.; Pomerantz, A. E. et al. Gravitational gradient of asphaltene molecules in an oilfield reservoir with light oil. Energy Fuels 2018, 32, 4911–4924.

    Article  CAS  Google Scholar 

  42. Lohr, T. G.; Urgel, J. I.; Eimre, K.; Liu, J. Z.; Di Giovannantonio, M.; Mishra, S.; Berger, R.; Ruffieux, P.; Pignedoli, C. A.; Fasel, R. et al. On-surface synthesis of non-benzenoid nanographenes by oxidative ring-closure and ring-rearrangement reactions. J. Am. Chem. Soc. 2020, 142, 13565–13572.

    Article  CAS  Google Scholar 

  43. Gross, L. Recent advances in submolecular resolution with scanning probe microscopy. Nat. Chem. 2011, 3, 273–278.

    Article  CAS  Google Scholar 

  44. Giessibl, F. J. Atomic resolution on Si(111)−(7 × 7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl. Phys. Lett. 2000, 76, 1470–1472.

    Article  CAS  Google Scholar 

  45. Bartels, L.; Meyer, G.; Rieder, K. H.; Velic, D.; Knoesel, E.; Hotzel, A.; Wolf, M.; Ertl, G. Dynamics of electron-induced manipulation of individual CO molecules on Cu(111). Phys. Rev. Lett. 1998, 80, 2004–2007.

    Article  CAS  Google Scholar 

  46. Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M. B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. et al. Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901.

    CAS  Google Scholar 

  47. Prandini, G.; Marrazzo, A.; Castelli, I. E.; Mounet, N.; Marzari, N. Precision and efficiency in solid-state pseudopotential calculations. npj Comput. Mater. 2018, 4, 72.

    Article  Google Scholar 

  48. Yakutovich, A. V.; Eimre, K.; Schütt, O.; Talirz, L.; Adorf, C. S.; Andersen, C. W.; Ditler, E.; Du, D.; Passerone, D.; Smit, B. et al. AiiDAlab — an ecosystem for developing, executing, and sharing scientific workflows. Comput. Mater. Sci. 2021, 188, 110165.

    Article  CAS  Google Scholar 

  49. Pizzi, G.; Cepellotti, A.; Sabatini, R.; Marzari, N.; Kozinsky, B. AiiDA: Automated interactive infrastructure and database for computational science. Comput. Mater. Sci. 2016, 111, 218–230.

    Article  Google Scholar 

  50. Xu X. S.; Di Giovannantonio M.; Urgel, J. I.; Pignedoli, C. A.; Ruffieux, P.; Müllen, K.; Fasel, R.; Narita, A. On-surface activation of benzylic C-H bonds for the synthesis of pentagon-fused graphene nanoribbons. Materials Cloud Archive 2021.63 (2021), doi: https://doi.org/10.24435/materialscloud:xj-bb.

Download references

Acknowledgements

We are grateful for the financial support by the Max Planck Society, the Swiss National Science Foundation under Grant No. 200020_182015, the NCCR MARVEL funded by the Swiss National Science Foundation (No. 51NF40-182892), the European Union’s Horizon 2020 research and innovation programme under grant agreement number 785219 (Graphene Flagship Core 2), the Office of Naval Research (No. N00014-18-1-2708), and the Okinawa Institute of Science and Technology Graduate University (OIST). The Swiss National Supercomputing Centre (CSCS) under project ID s904 is acknowledged for computational resources. Skillful technical assistance by Lukas Rotach is gratefully acknowledged.

Funding

Funding note Open access funding enabled and organized by Projekt DEAL.

Author information

Author notes
  1. Marco Di Giovannantonio

    Present address: Istituto di Struttura della Materia-CNR (ISM-CNR), via Fosso del Cavaliere 100, 00133, Roma, Italy

  2. José I. Urgel

    Present address: IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain

  3. Xiushang Xu and Marco Di Giovannantonio contributed equally to this work.

Authors and Affiliations

  1. Max Planck Institute for Polymer Research, 55128, Mainz, Germany

    Xiushang Xu, Klaus Müllen & Akimitsu Narita

  2. Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 8600, Dübendorf, Switzerland

    Marco Di Giovannantonio, José I. Urgel, Carlo A. Pignedoli, Pascal Ruffieux & Roman Fasel

  3. Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan

    Xiushang Xu & Akimitsu Narita

  4. Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany

    Klaus Müllen

Authors
  1. Xiushang Xu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Marco Di Giovannantonio
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. José I. Urgel
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Carlo A. Pignedoli
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Pascal Ruffieux
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Klaus Müllen
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Roman Fasel
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Akimitsu Narita
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Klaus Müllen, Roman Fasel or Akimitsu Narita.

Electronic Supplementary Material

On-surface activation of benzylic C-H bonds for the synthesis of pentagon-fused graphene nanoribbons

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Di Giovannantonio, M., Urgel, J.I. et al. On-surface activation of benzylic C-H bonds for the synthesis of pentagon-fused graphene nanoribbons. Nano Res. 14, 4754–4759 (2021). https://doi.org/10.1007/s12274-021-3419-2

Download citation

  • Received: 15 January 2021

  • Revised: 21 February 2021

  • Accepted: 23 February 2021

  • Published: 23 April 2021

  • Issue Date: December 2021

  • DOI: https://doi.org/10.1007/s12274-021-3419-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • graphene nanoribbons
  • on-surface synthesis
  • scanning-tunneling microscope
  • noncontact atomic force microscope
  • C-H activation
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.