Skip to main content

On-surface activation of benzylic C-H bonds for the synthesis of pentagon-fused graphene nanoribbons

Abstract

Graphene nanoribbons (GNRs) have potential for applications in electronic devices. A key issue, thereby, is the fine-tuning of their electronic characteristics, which can be achieved through subtle structural modifications. These are not limited to the conventional armchair, zigzag, and cove edges, but also possible through incorporation of non-hexagonal rings. On-surface synthesis enables the fabrication and visualization of GNRs with atomically precise chemical structures, but strategies for the incorporation of non-hexagonal rings have been underexplored. Herein, we describe the on-surface synthesis of armchair-edged GNRs with incorporated five-membered rings through the C-H activation and cyclization of benzylic methyl groups. Ortho-Tolyl-substituted dibromobianthryl was employed as the precursor monomer, and visualization of the resulting structures after annealing at 300 °C on a gold surface by high-resolution noncontact atomic force microscopy clearly revealed the formation of methylene-bridged pentagons at the GNR edges. These persisted after annealing at 340 °C, along with a few fully conjugated pentagons having singly-hydrogenated apexes. The benzylic methyl groups could also migrate or cleave-off, resulting in defects lacking the five-membered rings. Moreover, unexpected and unique structural rearrangements, including the formation of embedded heptagons, were observed. Despite the coexistence of different reaction pathways that hamper selective synthesis of a uniform structure, our results provide novel insights into on-surface reactions en route to functional, non-benzenoid carbon nanomaterials.

References

  1. Yano, Y.; Mitoma, N.; Ito, H.; Itami, K. A quest for structurally uniform graphene nanoribbons: Synthesis, properties, and applications. J. Org. Chem. 2020, 85, 4–33.

    CAS  Google Scholar 

  2. Narita, A.; Wang, X. Y.; Feng, X. L.; Müllen, K. New advances in nanographene chemistry. Chem. Soc. Rev. 2015, 44, 6616–6643.

    CAS  Google Scholar 

  3. Xu, X. S.; Müllen, K.; Narita, A. Syntheses and characterizations of functional polycyclic aromatic hydrocarbons and graphene nanoribbons. Bull. Chem. Soc. Jpn. 2020, 93, 490–506.

    CAS  Google Scholar 

  4. Chen, Z. P.; Narita, A.; Müllen, K. Graphene nanoribbons: On-surface synthesis and integration into electronic devices. Adv. Mater. 2020, 32, 2001893.

    CAS  Google Scholar 

  5. Clair, S.; de Oteyza, D. G. Controlling a chemical coupling reaction on a surface: Tools and strategies for on-surface synthesis. Chem. Rev. 2019, 119, 4717–4776.

    CAS  Google Scholar 

  6. Dong, L.; Liu, P. N.; Lin, N. Surface-activated coupling reactions confined on a surface. Acc. Chem. Res. 2015, 48, 2765–2774.

    CAS  Google Scholar 

  7. Niu, T. C.; Zhang, J. L.; Chen, W. Atomic mechanism for the growth of wafer-scale single-crystal graphene: Theoretical perspective and scanning tunneling microscopy investigations. 2D Mater. 2017, 4, 042002.

    Google Scholar 

  8. Shen, Q.; Gao, H. Y.; Fuchs, H. Frontiers of on-surface synthesis: From principles to applications. Nano Today 2017, 13, 77–96.

    CAS  Google Scholar 

  9. Gross, L.; Schuler, B.; Pavliček, N.; Fatayer, S.; Majzik, Z.; Moll, N.; Peña, D.; Meyer, G. Atomic force microscopy for molecular structure elucidation. Angew. Chem., Int. Ed. 2018, 57, 3888–3908.

    CAS  Google Scholar 

  10. Zhou, X. H.; Yu, G. Modified engineering of graphene nanoribbons prepared via on-surface synthesis. Adv. Mater. 2020, 32, 1905957.

    CAS  Google Scholar 

  11. Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

    CAS  Google Scholar 

  12. Zhang, H. M.; Lin, H. P.; Sun, K. W.; Chen, L.; Zagranyarski, Y.; Aghdassi, N.; Duhm, S.; Li, Q.; Zhong, D. Y.; Li, Y. Y. et al. On-surface synthesis of rylene-type graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 4022–4025.

    CAS  Google Scholar 

  13. Denk, R.; Hohage, M.; Zeppenfeld, P.; Cai, J. M.; Pignedoli, C. A.; Söde, H.; Fasel, R.; Feng, X. L.; Müllen, K.; Wang, S. D. et al. Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Nat. Commun. 2014, 5, 4253.

    CAS  Google Scholar 

  14. Basagni, A.; Sedona, F.; Pignedoli, C. A.; Cattelan, M.; Nicolas, L.; Casarin, M.; Sambi, M. Molecules-oligomers-nanowires-graphene nanoribbons: A bottom-up stepwise on-surface covalent synthesis preserving long-range order. J. Am. Chem. Soc. 2015, 137, 1802–1808.

    CAS  Google Scholar 

  15. Talirz, L.; Söde, H.; Dumslaff, T.; Wang, S. Y.; Sanchez-Valencia, J. R.; Liu, J.; Shinde, P.; Pignedoli, C. A.; Liang, L. B.; Meunier, V. et al. On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons. ACS Nano 2017, 11, 1380–1388.

    CAS  Google Scholar 

  16. Chen, Y. C.; de Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 2013, 7, 6123–6128.

    CAS  Google Scholar 

  17. Abdurakhmanova, N.; Amsharov, N.; Stepanow, S.; Jansen, M.; Kern, K.; Amsharov, K. Synthesis of wide atomically precise graphene nanoribbons from para-oligophenylene based molecular precursor. Carbon 2014, 77, 1187–1190.

    CAS  Google Scholar 

  18. Sun, K. W.; Ji, P. H.; Zhang, J. J.; Wang, J. X.; Li, X. C.; Xu, X.; Zhang, H. M.; Chi, L. F. On-surface synthesis of 8-and 10-armchair graphene nanoribbons. Small 2019, 15, 1804526.

    Google Scholar 

  19. Yamaguchi, J.; Hayashi, H.; Jippo, H.; Shiotari, A.; Ohtomo, M.; Sakakura, M.; Hieda, N.; Aratani, N.; Ohfuchi, M.; Sugimoto, Y. et al. Small bandgap in atomically precise 17-atom-wide armchair-edged graphene nanoribbons. Comms. Mater. 2020, 1, 36.

    Google Scholar 

  20. Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.

    CAS  Google Scholar 

  21. Costa, P. S.; Teeter, J. D.; Enders, A.; Sinitskii, A. Chevron-based graphene nanoribbon heterojunctions: Localized effects of lateral extension and structural defects on electronic properties. Carbon 2018, 134, 310–315.

    CAS  Google Scholar 

  22. Han, P.; Akagi, K.; Federici Canova, F.; Mutoh, H.; Shiraki, S.; Iwaya, K.; Weiss, P. S.; Asao, N.; Hitosugi, T. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 2014, 8, 9181–9187.

    CAS  Google Scholar 

  23. Miao, D. D.; Daigle, M.; Lucotti, A.; Boismenu-Lavoie, J.; Tommasini, M.; Morin, J. F. Toward thiophene-annulated graphene nanoribbons. Angew. Chem., Int. Ed. 2018, 57, 3588–3592.

    CAS  Google Scholar 

  24. Wang, X. Y.; Urgel, J. I.; Barin, G. B.; Eimre, K.; Di Giovannantonio, M.; Milani, A.; Tommasini, M.; Pignedoli, C. A.; Ruffieux, P.; Feng, X. L. et al. Bottom-up synthesis of heteroatom-doped chiral graphene nanoribbons. J. Am. Chem. Soc. 2018, 140, 9104–9107.

    CAS  Google Scholar 

  25. Kawai, S.; Saito, S.; Osumi, S.; Yamaguchi, S.; Foster, A. S.; Spijker, P.; Meyer, E. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 2015, 6, 8098.

    CAS  Google Scholar 

  26. Cloke, R. R.; Marangoni, T.; Nguyen, G. D.; Joshi, T.; Rizzo, D. J.; Bronner, C.; Cao, T.; Louie, S. G.; Crommie, M. F.; Fischer, F. R. Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 8872–8875.

    CAS  Google Scholar 

  27. Kawai, S.; Nakatsuka, S.; Hatakeyama, T.; Pawlak, R.; Meier, T.; Tracey, J.; Meyer, E.; Foster, A. S. Multiple heteroatom substitution to graphene nanoribbon. Sci. Adv. 2018, 4, eaar7181.

  28. Bronner, C.; Stremlau, S.; Gille, M.; Brauße, F.; Haase, A.; Hecht, S.; Tegeder, P. Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem., Int. Ed. 2013, 52, 4422–4425.

    CAS  Google Scholar 

  29. Zhang, Y. F.; Zhang, Y.; Li, G.; Lu, J. C.; Que, Y. D.; Chen, H.; Berger, R.; Feng, X. L.; Müllen, K.; Lin, X. et al. Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps. Nano Res. 2017, 10, 3377–3384.

    CAS  Google Scholar 

  30. Durr, R. A.; Haberer, D.; Lee, Y. L.; Blackwell, R.; Kalayjian, A. M.; Marangoni, T.; Ihm, J.; Louie, S. G.; Fischer, F. R. Orbitally matched edge-doping in graphene nanoribbons. J. Am. Chem. Soc. 2018, 140, 807–813.

    CAS  Google Scholar 

  31. Nguyen, G. D.; Toma, F. M.; Cao, T.; Pedramrazi, Z.; Chen, C.; Rizzo, D. J.; Joshi, T.; Bronner, C.; Chen, Y. C.; Favaro, M. et al. Bottom-up synthesis of N = 13 sulfur-doped graphene nanoribbons. J. Phys. Chem. C 2016, 120, 2684–2687.

    CAS  Google Scholar 

  32. Moreno, C.; Paradinas, M.; Vilas-Varela, M.; Panighel, M.; Ceballos, G.; Peña, D.; Mugarza, A. On-surface synthesis of superlattice arrays of ultra-long graphene nanoribbons. Chem. Commun. 2018, 54, 9402–9405.

    CAS  Google Scholar 

  33. Moreno, C.; Vilas-Varela, M.; Kretz, B.; Garcia-Lekue, A.; Costache, M. V.; Paradinas, M.; Panighel, M.; Ceballos, G.; Valenzuela, S. O.; Peña, D. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 2018, 360, 199–203.

    CAS  Google Scholar 

  34. Fan, Q. T.; Martin-Jimenez, D.; Ebeling, D.; Krug, C. K.; Brechmann, L.; Kohlmeyer, C.; Hilt, G.; Hieringer, W.; Schirmeisen, A.; Gottfried, J. M. Nanoribbons with nonalternant topology from fusion of polyazulene: Carbon allotropes beyond graphene. J. Am. Chem. Soc. 2019, 141, 17713–17720.

    CAS  Google Scholar 

  35. Di Giovannantonio, M.; Urgel, J. I.; Beser, U.; Yakutovich, A. V.; Wilhelm, J.; Pignedoli, C. A.; Ruffieux, P.; Narita, A.; Müllen, K.; Fasel, R. On-surface synthesis of indenofluorene polymers by oxidative five-membered ring formation. J. Am. Chem. Soc. 2018, 140, 3532–3536.

    CAS  Google Scholar 

  36. Di Giovannantonio, M.; Eimre, K.; Yakutovich, A. V.; Chen, Q.; Mishra, S.; Urgel, J. I.; Pignedoli, C. A.; Ruffieux, P.; Müllen, K.; Narita, A. et al. On-surface synthesis of antiaromatic and open-shell indeno [2,1-b] fluorene polymers and their lateral fusion into porous ribbons. J. Am. Chem. Soc. 2019, 141, 12346–12354.

    CAS  Google Scholar 

  37. Di Giovannantonio, M.; Chen, Q.; Urgel, J. I.; Ruffieux, P.; Pignedoli, C. A.; Müllen, K.; Narita, A.; Fasel, R. On-surface synthesis of oligo (indenoindene). J. Am. Chem. Soc. 2020, 142, 12925–12929.

    CAS  Google Scholar 

  38. Yazaki, R.; Ohshima, T. Recent strategic advances for the activation of benzylic C-H bonds for the formation of C-C bonds. Tetrahedron Lett. 2019, 60, 151225.

    Google Scholar 

  39. Xue, X. S.; Ji, P. J.; Zhou, B. Y.; Cheng, J. P. The essential role of bond energetics in C-H activation/functionalization. Chem. Rev. 2017, 117, 8622–8648.

    CAS  Google Scholar 

  40. Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 2009, 325, 1110–1114.

    CAS  Google Scholar 

  41. Betancourt, S. S.; Johansen, Y. B.; Forsythe, J. C.; Rinna, J.; Christoffersen, K.; Skillingstad, P.; Achourov, V.; Canas, J.; Chen, L.; Pomerantz, A. E. et al. Gravitational gradient of asphaltene molecules in an oilfield reservoir with light oil. Energy Fuels 2018, 32, 4911–4924.

    CAS  Google Scholar 

  42. Lohr, T. G.; Urgel, J. I.; Eimre, K.; Liu, J. Z.; Di Giovannantonio, M.; Mishra, S.; Berger, R.; Ruffieux, P.; Pignedoli, C. A.; Fasel, R. et al. On-surface synthesis of non-benzenoid nanographenes by oxidative ring-closure and ring-rearrangement reactions. J. Am. Chem. Soc. 2020, 142, 13565–13572.

    CAS  Google Scholar 

  43. Gross, L. Recent advances in submolecular resolution with scanning probe microscopy. Nat. Chem. 2011, 3, 273–278.

    CAS  Google Scholar 

  44. Giessibl, F. J. Atomic resolution on Si(111)−(7 × 7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl. Phys. Lett. 2000, 76, 1470–1472.

    CAS  Google Scholar 

  45. Bartels, L.; Meyer, G.; Rieder, K. H.; Velic, D.; Knoesel, E.; Hotzel, A.; Wolf, M.; Ertl, G. Dynamics of electron-induced manipulation of individual CO molecules on Cu(111). Phys. Rev. Lett. 1998, 80, 2004–2007.

    CAS  Google Scholar 

  46. Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M. B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. et al. Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901.

    CAS  Google Scholar 

  47. Prandini, G.; Marrazzo, A.; Castelli, I. E.; Mounet, N.; Marzari, N. Precision and efficiency in solid-state pseudopotential calculations. npj Comput. Mater. 2018, 4, 72.

    Google Scholar 

  48. Yakutovich, A. V.; Eimre, K.; Schütt, O.; Talirz, L.; Adorf, C. S.; Andersen, C. W.; Ditler, E.; Du, D.; Passerone, D.; Smit, B. et al. AiiDAlab — an ecosystem for developing, executing, and sharing scientific workflows. Comput. Mater. Sci. 2021, 188, 110165.

    CAS  Google Scholar 

  49. Pizzi, G.; Cepellotti, A.; Sabatini, R.; Marzari, N.; Kozinsky, B. AiiDA: Automated interactive infrastructure and database for computational science. Comput. Mater. Sci. 2016, 111, 218–230.

    Google Scholar 

  50. Xu X. S.; Di Giovannantonio M.; Urgel, J. I.; Pignedoli, C. A.; Ruffieux, P.; Müllen, K.; Fasel, R.; Narita, A. On-surface activation of benzylic C-H bonds for the synthesis of pentagon-fused graphene nanoribbons. Materials Cloud Archive 2021.63 (2021), doi: https://doi.org/10.24435/materialscloud:xj-bb.

Download references

Acknowledgements

We are grateful for the financial support by the Max Planck Society, the Swiss National Science Foundation under Grant No. 200020_182015, the NCCR MARVEL funded by the Swiss National Science Foundation (No. 51NF40-182892), the European Union’s Horizon 2020 research and innovation programme under grant agreement number 785219 (Graphene Flagship Core 2), the Office of Naval Research (No. N00014-18-1-2708), and the Okinawa Institute of Science and Technology Graduate University (OIST). The Swiss National Supercomputing Centre (CSCS) under project ID s904 is acknowledged for computational resources. Skillful technical assistance by Lukas Rotach is gratefully acknowledged.

Funding

Funding note Open access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Klaus Müllen, Roman Fasel or Akimitsu Narita.

Electronic Supplementary Material

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Di Giovannantonio, M., Urgel, J.I. et al. On-surface activation of benzylic C-H bonds for the synthesis of pentagon-fused graphene nanoribbons. Nano Res. 14, 4754–4759 (2021). https://doi.org/10.1007/s12274-021-3419-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3419-2

Keywords

  • graphene nanoribbons
  • on-surface synthesis
  • scanning-tunneling microscope
  • noncontact atomic force microscope
  • C-H activation