Skip to main content
Log in

Identifying the convergent reaction path from predesigned assembled structures: Dissymmetrical dehalogenation of Br2Py on Ag(111)

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

On-surface Ullmann coupling has been intensely utilized for the tailor-made fabrication of conjugated frameworks towards molecular electronics, however, reaction mechanisms are still limitedly understood. Herein, we provide a comprehensive elucidation of the surface Ullmann coupling of 2,7-dibromopyrene (Br2Py) on Ag(111) by scanning tunnelling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and density function theory (DFT), and reveal that the Ullmann reaction path is unique regardless of predesigned assembled structures. By manipulating deposition conditions, diverse assembled architectures have been constructed for Br2Py on Ag(111), including the ladder phase, parallel arrangement, hexagonal patterns from monomers or Kagome lattices based on organometallic (OM) dimers. Intriguingly, stepwise annealing leads to an identical reaction diagram for the surface Ullmann coupling from individual assembled structures convergent into the brick-wall-pattern OM dimers first, which is deemed to be a stable phase, and then into elongated OM chains in order and eventually long-range polymers with direct C-C coupling. While the reaction mechanism is demonstrated to be dominated by the metal coordinated and halogen bonding motifs, interestingly, it has also been revealed that surface adatoms and dissociated Br atoms play a crucial role in coupling reactions. In contrast to previous reports demonstrating the manipulation of Ullmann reactions by preassembled strategy, herein, weak intermolecular interaction in assembled nanostructures is immediately suppressed by strong covalent bonding during reactions. Importantly, our report proposes essential insights on fundamental understanding of surface Ullmann coupling towards high-yield surface synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Browne, W. R.; Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 2006, 1, 25–35.

    Article  CAS  Google Scholar 

  2. Song, F.; Wells, J. W.; Handrup, K.; Li, Z. S.; Bao, S. N.; Schulte, K.; Ahola-Tuomi, M.; Mayor, L. C.; Swarbrick, J. C.; Perkins, E. W. et al. Direct measurement of electrical conductance through a self-assembled molecular layer. Nat. Nanotechnol. 2009, 4, 373–376.

    Article  CAS  Google Scholar 

  3. Heath, J. R.; Ratner, M. A. Molecular electronics. Phys. Today 2003, 56, 43–49.

    Article  CAS  Google Scholar 

  4. Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

    Article  CAS  Google Scholar 

  5. Gourdon, A. On-surface covalent coupling in ultrahigh vacuum. Angew. Chem., Int. Ed. 2008, 47, 6950–6953.

    Article  CAS  Google Scholar 

  6. Gröning, O, Wang, S. Y.; Yao, X. L.; Pignedoli, C. A.; Barin, B. G.; Daniels, C.; Cupo, A.; Meunier, V.; Feng, X. L.; Narita, A. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 2018, 560, 209–213.

    Article  Google Scholar 

  7. Grill, L; Hecht, S. Covalent on-surface polymerization. Nat. Chem. 2020, 12, 115–130.

    Article  CAS  Google Scholar 

  8. Zhang, Y. Q.; Kepčija, N.; Kleinschrodt, M.; Diller, K.; Fischer, S.; Papageorgiou, A. C.; Allegretti, F.; Björk, J.; Klyatskaya, S.; Klappenberger, F. et al. Homo-coupling of terminal alkynes on a noble metal surface. Nat. Commun. 2012, 3, 1286.

    Article  Google Scholar 

  9. Treier, M.; Pignedoli, C. A.; Laino, T.; Rieger, R.; Müllen, K.; Passerone, D.; Fasel, R. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat. Chem. 2011, 3, 61–67.

    Article  CAS  Google Scholar 

  10. Zhang, R.; Lyu, G. Q.; Li, D. Y.; Liu, P. N.; Lin, N. Template-controlled Sonogashira cross-coupling reactions on a Au(111) surface. Chem. Commun. 2017, 53, 1731–1734.

    Article  CAS  Google Scholar 

  11. Li, Q.; Yang, B.; Lin, H. P.; Aghdassi, N.; Miao, K. J.; Zhang, J. J.; Zhang, H. M.; Li, Y. Y.; Duhm, S.; Fan, J. et al. Surface-controlled Mono/Diselective ortho C-H bond activation. J. Am. Chem. Soc. 2016, 138, 2809–2814.

    Article  CAS  Google Scholar 

  12. Sun, Q.; Cai, L. L.; Wang, S. Y.; Widmer, R.; Ju, H. X.; Zhu, J. F.; Li, L.; He, Y. B.; Ruffieux, P.; Fasel, R. et al. Bottom-Up synthesis of metalated carbyne. J. Am. Chem. Soc. 2016, 138, 1106–1109.

    Article  CAS  Google Scholar 

  13. Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M. V.; Hecht, S. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2007, 2, 687–691.

    Article  CAS  Google Scholar 

  14. Fan, Q. T.; Gottfried, J. M.; Zhu, J. F. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures. Acc. Chem. Res. 2015, 48, 2484–2494.

    Article  CAS  Google Scholar 

  15. Clair, S; de Oteyza D. G. Controlling a chemical coupling reaction on a surface: Tools and strategies for on-surface synthesis. Chem. Rev. 2019, 119, 4717–4776.

    Article  CAS  Google Scholar 

  16. Lipton-Duffin, J. A.; Ivasenko, O.; Perepichka, D. F.; Rosei, F. Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 2009, 5, 592.

    Article  CAS  Google Scholar 

  17. Bieri, M.; Nguyen, M. T.; Gröning, O.; Cai, J. M.; Treier, M.; Aït-Mansour, K.; Ruffieux, P.; Pignedoli, C. A.; Passerone, D.; Kastler, M. et al. Two-dimensional polymer formation on surfaces: Insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 2010, 132, 16669–16672.

    Article  CAS  Google Scholar 

  18. Zhou, X.; Wang, C. G.; Zhang, Y. J.; Cheng, F.; He, Y.; Shen, Q.; Shang, J.; Shao, X.; Ji, W.; Chen, W. et al. Steering surface reaction dynamics with a self-assembly strategy: Ullmann coupling on metal surfaces. Angew. Chem., Int. Ed. 2017, 56, 12852–12856.

    Article  CAS  Google Scholar 

  19. Zhong, D. Y.; Franke, J. H.; Podiyanachari, S. K.; Blömker, T.; Zhang, H. M.; Kehr, G.; Erker, G.; Fuchs, H.; Chi, L. F. Linear alkane polymerization on a gold surface. Science 2011, 334, 213–216.

    Article  CAS  Google Scholar 

  20. Dong, L.; Liu, P. N.; Lin, N. Surface-activated coupling reactions confined on a surface. Acc. Chem. Res. 2015, 48, 2765–2774.

    Article  CAS  Google Scholar 

  21. Fritton, M.; Duncan, D. A.; Deimel, P. S.; Rastgoo-Lahrood, A.; Allegretti, F.; Barth, J. V.; Heckl, W. M.; Björk, J.; Lackinger, M. The role of kinetics versus thermodynamics in surface-assisted Ullmann coupling on gold and silver surfaces. J. Am. Chem. Soc. 2019, 141, 4824–4832.

    Article  CAS  Google Scholar 

  22. Simonov, K. A.; Vinogradov, N. A.; Vinogradov, A. S.; Generalov, A. V.; Zagrebina, E. M.; Svirskiy, G. I.; Cafolla, A. A.; Carpy, T.; Cunniffe, J. P.; Taketsugu, T. et al. From graphene nanoribbons on Cu(111) to nanographene on Cu(110): Critical role of substrate structure in the bottom-up fabrication strategy. ACS Nano 2015, 9, 8997–9011.

    Article  CAS  Google Scholar 

  23. Peyrot, D.; Silly, F. On-surface synthesis of two-dimensional covalent organic structures versus halogen-bonded self-assembly: Competing formation of organic nanoarchitectures. ACS Nano 2016, 10, 5490–5498.

    Article  CAS  Google Scholar 

  24. Li, D. Y.; Li, S. W.; Xie, Y. L.; Hua, X.; Long, Y. T.; Wang, A.; Liu, P. N. On-surface synthesis of planar dendrimers via divergent cross-coupling reaction. Nat. Commun. 2019, 10, 2414.

    Article  Google Scholar 

  25. Zhou, X.; Dai, J. X.; Wu, K. Steering on-surface reactions with self-assembly strategy. Phys. Chem. Chem. Phys. 2017, 19, 31531–31539.

    Article  CAS  Google Scholar 

  26. Lu, H.; E, W. L.; Cai, L. L.; Ma, Z. B.; Xu, W.; Yang, X. M. Dissymmetric On-surface dehalogenation reaction steered by preformed self-assembled structure. J. Phys. Chem. Lett. 2020, 11, 1867–1872.

    Article  CAS  Google Scholar 

  27. Stolz, S.; Di Giovannantonio, M.; Urgel, J. I.; Sun, Q.; Kinikar, A.; Barin, G. B.; Bommert, M.; Fasel, R.; Widmer, R. Reversible dehalogenation in on-surface aryl-aryl coupling. Angew. Chem., Int. Ed. 2020, 59, 14106–14110.

    Article  CAS  Google Scholar 

  28. Hu, J. B.; Hu, J. P.; Zhang, Z. D.; Shen, K. C.; Liang, Z. F.; Zhang, H.; Tian, Q. W.; Wang, P.; Jiang, Z.; Huang, H. et al. Ullmann coupling of 2,7-dibromopyrene on Au(111) assisted by surface adatoms. Appl. Surf. Sci. 2020, 513, 145797.

    Article  CAS  Google Scholar 

  29. Kiraly, B.; Iski, E. V.; Mannix, A. J.; Fisher, B. L.; Hersam, M. C.; Guisinger, N. P. Solid-source growth and atomic-scale characterization of graphene on Ag(111). Nat. Commun. 2013, 4, 2804.

    Article  Google Scholar 

  30. Liu, J.; Chen, Q. W.; Cai, K.; Li, J.; Li, Y. R.; Yang, X.; Zhang, Y. J.; Wang, Y. F.; Tang, H.; Zhao, D. H. et al. Stepwise on-surface dissymmetric reaction to construct binodal organometallic network. Nat. Commun. 2019, 10, 2545.

    Article  Google Scholar 

  31. Fan, Q. T.; Liu, L. M.; Dai, J. Y.; Wang, T.; Ju, H. X.; Zhao, J.; Kuttner, J.; Hilt, G.; Gottfried, J. M.; Zhu, J. F. Surface adatom mediated structural transformation in bromoarene monolayers: Precursor phases in surface Ullmann reaction. ACS Nano 2018, 12, 2267–2274.

    Article  CAS  Google Scholar 

  32. Eichhorn, J.; Strunskus, T.; Rastgoo-Lahrood, A.; Samanta, D.; Schmittel, M.; Lackinger, M. On-surface Ullmann polymerization via intermediate organometallic networks on Ag(111). Chem. Commun. 2014, 50, 7680–7682.

    Article  CAS  Google Scholar 

  33. Hu, J. B.; Shen, K. C.; Hu, J. P.; Sun, H. L.; Tian, Q. W.; Liang, Z. F.; Huang, H.; Jiang, Z.; Wells, J. W.; Song, F. Structural Transformation of 2,7-Dibromopyrene on Au(111) Mediated by Halogen-Bonding Motifs. ChemPhysChem 2019, 20, 2376–2381.

    Article  CAS  Google Scholar 

  34. Chung, K. H.; Koo, B. G.; Kim, H.; Yoon, J. K.; Kim, J. H.; Kwon, Y. K.; Kahng, S. J. Electronic structures of one-dimensional metal-molecule hybrid chains studied using scanning tunneling microscopy and density functional theory. Phys. Chem. Chem. Phys. 2012, 14, 7304–7308.

    Article  CAS  Google Scholar 

  35. Pham, T. A.; Song, F.; Nguyen, M. T.; Li, Z. S.; Studener, F.; Stöhr, M. Comparing Ullmann coupling on noble metal surfaces: On-surface polymerization of 1,3,6,8-tetrabromopyrene on Cu (111) and Au (111). Chem.—Eur. J. 2016, 22, 5937–5944.

    Article  CAS  Google Scholar 

  36. Liu, J.; Chen, Q. W.; He, Q. L.; Zhang, Y. J.; Fu, X. Y.; Wang, Y. F.; Zhao, D. H.; Chen, W.; Xu, G. Q.; Wu, K. Bromine adatom promoted C-H bond activation in terminal alkynes at room temperature on Ag(111). Phys. Chem. Chem. Phys. 2018, 20, 11081–11088.

    Article  CAS  Google Scholar 

  37. Zhang, Y. Q.; Paszkiewicz, M.; Du, P.; Zhang, L. D.; Lin, T.; Chen, Z.; Klyatskaya, S.; Ruben, M.; Seitsonen, A. P.; Barth, J. V. et al. Complex Supramolecular Interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor. Nat. Chem. 2018, 10, 296–304.

    Article  CAS  Google Scholar 

  38. Cheng, F.; Wu, X. J.; Hu, Z. X.; Lu, X. F.; Ding, Z. J.; Shao, Y.; Xu, H.; Ji, W.; Wu, J. S.; Loh, K. P. Two-dimensional tessellation by molecular tiles constructed from halogen-halogen and halogen-metal networks. Nat. Commun. 2018, 9, 4871.

    Article  Google Scholar 

  39. Han, D.; Fan, Q. T.; Dai, J. Y.; Wang, T.; Huang, J. M.; Xu, Q.; Ding, H. H.; Hu, J.; Feng, L.; Zhang, W. Z. et al. On-surface synthesis of armchair-edged graphene nanoribbons with zigzag topology. J. Phys. Chem. C 2020, 124, 5248–5256.

    Article  CAS  Google Scholar 

  40. Antczak, G.; Kamiński, W.; Morgenstern, K. Stabilizing CuPc coordination networks on Ag(100) by Ag atoms. J. Phys. Chem. C 2015, 119, 1442–1450.

    Article  CAS  Google Scholar 

  41. Dong, L.; Sun, Q.; Zhang, C.; Li, Z. W.; Sheng, K.; Kong, H. H.; Tan, Q. G.; Pan, Y. X.; Hu, A. G.; Xu, W. A self-assembled molecular nanostructure for trapping the native adatoms on Cu(110). Chem. Commun. 2013, 49, 1735–1737.

    Article  CAS  Google Scholar 

  42. Dyer, M. S.; Robin, A.; Haq, S.; Raval, R.; Persson, M.; Klimeš, J. Understanding the interaction of the porphyrin macrocycle to reactive metal substrates: Structure, bonding, and adatom capture. ACS Nano 2011, 5, 1831–1838.

    Article  CAS  Google Scholar 

  43. Pivetta, M.; Pacchioni, G. E.; Fernandes, E.; Brune, H. Temperature-dependent self-assembly of NC-Ph5-CN molecules on Cu(111). J. Chem. Phys. 2015, 142, 101928.

    Article  Google Scholar 

  44. Yang, B.; Cao, N.; Ju, H. X.; Lin, H. P.; Li, Y. Y.; Ding, H. H.; Ding, J. Q.; Zhang, J. J.; Peng, C. C.; Zhang, H. M. et al. Intermediate states directed chiral transfer on a silver surface. J. Am. Chem. Soc. 2019, 141, 168–174.

    Article  CAS  Google Scholar 

  45. Wang, T.; Fan, Q. T.; Feng, L.; Tao, Z. J.; Huang, J. M.; Ju, H. X.; Xu, Q.; Hu, S. W.; Zhu, J. F. Chiral Kagome lattices from on-surface synthesized molecules. ChemPhysChem 2017, 18, 3329–3333.

    Article  CAS  Google Scholar 

  46. Kawai, S.; Sadeghi, A.; Okamoto, T.; Mitsui, C.; Pawlak, R.; Meier, T.; Takeya, J.; Goedecker, S.; Meyer, E. Organometallic bonding in an Ullmann-type on-surface chemical reaction studied by high-resolution atomic force microscopy. Small 2016, 12, 5303–5311.

    Article  CAS  Google Scholar 

  47. Zint, S.; Ebeling, D.; Schlöder, T.; Ahles, S.; Mollenhauer, D.; Wegner, H. A.; Schirmeisen, A. Imaging successive intermediate states of the on-surface Ullmann reaction on Cu(111): Role of the metal coordination. ACS Nano 2017, 11, 4183–4190.

    Article  CAS  Google Scholar 

  48. Yang, Z. C.; Fromm, L.; Sander, T.; Gebhardt, J.; Schaub, T. A.; Görling, A.; Kivala, M.; Maier, S. On-surface assembly of hydrogen-and halogen-bonded supramolecular graphyne-like networks. Angew. Chem., Int. Ed. 2020, 59, 9549–9555.

    Article  CAS  Google Scholar 

  49. Galeotti, G.; Di Giovannantonio, M.; Cupo, A.; Xing, S.; Lipton-Duffin, J.; Ebrahimi, M.; Vasseur, G.; Kierren, B.; Fagot-Revurat, Y.; Tristant, D. et al. An unexpected organometallic intermediate in surface-confined Ullmann coupling. Nanoscale 2019, 11, 7682–7689.

    Article  CAS  Google Scholar 

  50. Chen, M.; Röckert, M.; Xiao, J.; Drescher, H. J.; Steinrück, H. P.; Lytken, O.; Gottfried, J. M. Coordination reactions and layer exchange processes at a buried metal-organic interface. J. Phys. Chem. C. 2014, 118, 8501–8507.

    Article  CAS  Google Scholar 

  51. Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baró, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

    Article  CAS  Google Scholar 

  52. Shen, K. C.; Sun, H. L.; Hu, J. P.; Hu, J. B.; Liang, Z. F.; Li, H. Y.; Zhu, Z. Y.; Huang, Y. B.; Kong, L. Y.; Wang, Y. et al. Fabricating quasi-free-standing graphene on a SiC(0001) surface by steerable intercalation of iron. J. Phys. Chem. C. 2018, 122, 21484–21492.

    Article  CAS  Google Scholar 

  53. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

    Article  CAS  Google Scholar 

  54. Liang, Z. F.; Wang, Y.; Hua, C. Q.; Xiao, C. C.; Chen, M. G.; Jiang, Z.; Tai, R. Z.; Lu, Y. H.; Song, F. Electronic structures of ultra-thin tellurium nanoribbons. Nanoscale 2019, 11, 14134–14140.

    Article  CAS  Google Scholar 

  55. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  56. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  57. Xu, S. G.; Zhao, Y. J.; Liao, J. H.; Yang, X. B.; Xu, H. The nucleation and growth of borophene on the Ag (111) surface. Nano Res 2016, 9, 2616–2622.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Fruitful discussions with Dr. Qitang Fan are greatly appreciated. This work was financially supported by National Natural Science Foundation of China (Nos. 11874380, 11874427, and U1732267), the National Key Research and Development Program of China (No. 2016YFA040130201) and the Hundred Talents Program of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Song.

Electronic Supplementary Material

12274_2021_3409_MOESM1_ESM.pdf

Identifying the convergent reaction path from predesigned assembled structures: Dissymmetrical dehalogenation of Br2Py on Ag(111)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Liang, Z., Shen, K. et al. Identifying the convergent reaction path from predesigned assembled structures: Dissymmetrical dehalogenation of Br2Py on Ag(111). Nano Res. 14, 4704–4713 (2021). https://doi.org/10.1007/s12274-021-3409-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3409-9

Keywords

Navigation