Skip to main content
Log in

Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal—organic framework hybrid nanozymes for ultrasensitive detection of glucose

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The metal—organic frameworks (MOFs) are expected as ideal biomimetic enzymes for colorimetric glucose detection because of their large surface areas, well defined pore structures, tunable chemical composition, and multi-functional sites. However, the intrinsically chemical instability and low mimetic enzyme activity of MOFs hinder the application of them in imitating the enzyme reactions. In this work, we demonstrated a metal-MOF synergistic catalysis strategy, by loading Pt nanoparticles (Pt NPs) on MIL-88B-NH2 (Fe-MOF) to increase peroxidase-like activity for the detection of glucose. The induced electrons transfer from Pt atom to Fe atom accelerated the redox cycling of Fe3+/Fe2+, improved the overall efficiency of the peroxidase-like reaction, and enabled the efficient and robust colorimetric glucose detection, which was proved by both experiments and density functional theory (DFT) calculation. Additionally, the sensitivity and chemical stability of this synergistic effect strategy to detect the glucose are not affected by the complex external factors, which represented a great potential in fast, easy, sensitive, and specific recognition of clinical diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, W. T.; Zhou, T.; Berliner, A.; Banerjee, P.; Zhou, S. Q. Glucose-mediated assembly of phenylboronic acid modified CdTe/ZnTe/ZnS quantum dots for intracellular glucose probing. Angew. Chem., Int. Ed. 2010, 49, 6554–6558.

    Article  CAS  Google Scholar 

  2. Pandey, A.; Tripathi, P.; Pandey, R.; Srivatava, R.; Goswami, S. Alternative therapies useful in the management of diabetes: A systematic review. J. Pharm. Bioallied. Sci. 2011, 3, 504–512.

    Article  CAS  Google Scholar 

  3. Zimmet, P.; Alberti, K. G. M. M.; Shaw, J. Global and societal implications of the diabetes epidemic. Nature 2001, 414, 782–787.

    Article  CAS  Google Scholar 

  4. Xiao, J. Y.; Liu, Y.; Su, L.; Zhao, D.; Zhao, L.; Zhang, X. J. Microfluidic chip-based wearable colorimetric sensor for simple and facile detection of sweat glucose. Anal. Chem. 2019, 91, 14803–14807.

    Article  CAS  Google Scholar 

  5. Zhao, Y. Y.; Yang, J.; Shan, G. Y.; Liu, Z. Y.; Cui, A. N.; Wang, A. L.; Chen, Y. W.; Liu, Y. C. Photothermal-enhanced tandem enzyme-like activity of Ag2−xCuxS nanoparticles for one-step colorimetric glucose detection in unprocessed human urine. Sens. Actuators B Chem. 2020, 305, 127420.

    Article  CAS  Google Scholar 

  6. Ma, C. B.; Zhang, Y.; Liu, Q.; Du, Y.; Wang, E. K. Enhanced stability of enzyme immobilized in rationally designed amphiphilic aerogel and its application for sensitive glucose detection. Anal. Chem. 2020, 92, 5319–5328.

    Article  CAS  Google Scholar 

  7. Du, P. Y.; Niu, Q. X.; Chen, J.; Chen, Y.; Zhao, J.; Lu, X Q. “Switch-on” fluorescence detection of glucose with high specificity and sensitivity based on silver nanoparticles supported on porphyrin metal—organic frameworks. Anal. Chem. 2020, 92, 7980–7986.

    Article  CAS  Google Scholar 

  8. Wang, X. Y.; Qin, L.; Lin, M. J.; Xing, H.; Wei, H. Fluorescent graphitic carbon nitride-based nanozymes with peroxidase-like activities for ratiometric biosensing. Anal. Chem. 2019, 91, 10648–10656.

    Article  CAS  Google Scholar 

  9. Hu, Y. H.; Cheng, H. J.; Zhao, X. Z.; Wu, J. J. X.; Muhammad, F.; Lin, S. C.; He, J.; Zhou, L. Q.; Zhang, C. P.; Deng, Y. et al. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 2017, 11, 5558–5566.

    Article  CAS  Google Scholar 

  10. Jeong, J. W.; Arnob, M. M.; Baek, K. M.; Lee, S. Y.; Shih, W. C.; Jung, Y. S. 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced Raman spectroscopy analysis. Adv. Mater. 2016, 28, 8695–8704.

    Article  CAS  Google Scholar 

  11. Chaichi, M. J.; Ehsani, M. A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol-H2O2-gold nanoparticle chemiluminescence detection system. Sens. Actuators B Chem. 2016, 223, 713–722.

    Article  CAS  Google Scholar 

  12. Shi, W. B.; Zhang, X. D.; He, S. H.; Huang, Y. M. CoFe2O4 magnetic nanoparticles as a peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose. Chem. Commun. 2011, 47, 10785–10787.

    Article  CAS  Google Scholar 

  13. Fu, S. F.; Zhu, C. Z.; Song, J. H.; Engelhard, M.; Xia, H. B.; Du, D.; Lin, Y. H. PdCuPt nanocrystals with multibranches for enzyme-free glucose detection. ACS Appl. Mater. Interfaces 2016, 8, 22196–22200.

    Article  CAS  Google Scholar 

  14. Zhu, J. L.; Peng, X.; Nie, W.; Wang, Y. J.; Gao, J. W.; Wen, W.; Selvaraj, J. N.; Zhang, X. H.; Wang, S. F. Hollow copper sulfide nanocubes as multifunctional nanozymes for colorimetric detection of dopamine and electrochemical detection of glucose. Biosens. Bioelectron. 2019, 141, 111450.

    Article  CAS  Google Scholar 

  15. Xia, Y. S.; Ye, J. J.; Tan, K. H.; Wang, J. J.; Yang, G. Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism-glucose oxidase system. Anal. Chem. 2013, 85, 6241–6247.

    Article  CAS  Google Scholar 

  16. Jin, L. H.; Meng, Z.; Zhang, Y. Q.; Cai, S. J.; Zhang, Z. H.; Li, C.; Shang, L.; Shen, Y. H. Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. ACS Appl. Mater. Interfaces 2017, 9, 10027–10033.

    Article  CAS  Google Scholar 

  17. Cheng, X. W.; Huang, L.; Yang, X. Y.; Elzatahry, A. A.; Alghamdi, A.; Deng, Y. H. Rational design of a stable peroxidase mimic for colorimetric detection of H2O2 and glucose: A synergistic CeO2/Zeolite Y nanocomposite. J. Colloid. Interface Sci. 2019, 535, 425–435.

    Article  CAS  Google Scholar 

  18. Lou, Z. P.; Zhao, S.; Wang, Q.; Wei, H. N-doped carbon as peroxidase-like nanozymes for total antioxidant capacity assay. Anal. Chem. 2019, 91, 15267–15274.

    Article  CAS  Google Scholar 

  19. Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334–2375.

    Article  CAS  Google Scholar 

  20. Kim, C. R.; Uemura, T.; Kitagawa, S. Inorganic nanoparticles in porous coordination polymers. Chem. Soc. Rev. 2016, 45, 3828–3845.

    Article  CAS  Google Scholar 

  21. Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

    Article  CAS  Google Scholar 

  22. Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.

    Article  CAS  Google Scholar 

  23. Chen, Z. L.; Xu, H. B.; Ha, Y.; Li, X. Y.; Liu, M.; Wu, R. B. Two-dimensional dual carbon-coupled defective nickel quantum dots towards highly efficient overall water splitting. Appl. Catal. B Environ. 2019, 250, 213–223.

    Article  CAS  Google Scholar 

  24. Liu, Y. F.; Zhou, M.; Cao, W.; Wang, X. Y.; Wang, Q.; Li, S. R.; Wei, H. Light-responsive metal—organic framework as an oxidase mimic for cellular glutathione detection. Anal. Chem. 2019, 91, 8170–8175.

    Article  CAS  Google Scholar 

  25. Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal—organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.

    Article  Google Scholar 

  26. Meng, J. S.; Liu, X.; Niu, C. J.; Pang, Q.; Li, J. T.; Liu, F.; Liu, Z.; Mai, L. Q. Advances in metal—organic framework coatings: Versatile synthesis and broad applications. Chem. Soc. Rev. 2020, 49, 3142–3186.

    Article  CAS  Google Scholar 

  27. Xu, C. P.; Fang, R. Q; Luque, R.; Chen, L. Y.; Li, Y. W. Functional metal—organic frameworks for catalytic applications. Coordin. Chem. Rev. 2019, 388, 268–292.

    Article  CAS  Google Scholar 

  28. Chen, H. Y.; Qiu, Q. M.; Sharif, S.; Ying, S. N.; Wang, Y. X.; Ying, Y. B. Solution-phase synthesis of platinum nanoparticle-decorated metal—organic framework hybrid nanomaterials as biomimetic nanoenzymes for biosensing applications. ACS Appl. Mater. Interfaces 2018, 10, 24108–24115.

    Article  CAS  Google Scholar 

  29. Qiu, N.; Liu, Y.; Guo, R. Electrodeposition-assisted rapid preparation of Pt nanocluster/3D graphene hybrid nanozymes with outstanding multiple oxidase-like activity for distinguishing colorimetric determination of dihydroxybenzene isomers. ACS Appl. Mater. Interfaces 2020, 12, 15553–15561.

    Article  CAS  Google Scholar 

  30. Pham, M. H.; Vuong, G. T.; Vu, A. T.; Do, T. O. Novel route to size-controlled Fe-MIL-88B-NH2 metal—organic framework nanocrystals. Langmuir 2011, 27, 15261–15267.

    Article  CAS  Google Scholar 

  31. Yang, B. W.; Ding, L.; Yao, H. L.; Chen, Y.; Shi, J. L. A metal—organic framework (MOF) fenton nanoagent-enabled nanocatalytic cancer therapy in synergy with autophagy inhibition. Adv. Mater. 2020, 32, 1907152.

    Article  CAS  Google Scholar 

  32. André, R.; Natálio, F.; Humanes, M.; Leppin, J.; Heinze, K.; Wever, R.; Schröder, H. C.; Müller, W. E. G.; Tremel, W. V2O5 nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater. 2011, 21, 501–509.

    Article  Google Scholar 

  33. Zhang, H. J.; Han, L.; Li, F. A universal one-pot assay strategy based on bio-inorganic cascade catalysts for different analytes by changing pH-dependent activity of enzymes on enzyme mimics. Sens. Actuators B Chem. 2019, 286, 460–467.

    Article  CAS  Google Scholar 

  34. Zhang, P.; Sun, D. R.; Cho, A.; Weon, S.; Lee, S.; Lee, J.; Han, J. W.; Kim, D. P.; Choi, W. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 2019, 10, 940.

    Article  Google Scholar 

  35. Qu, K. G.; Shi, P.; Ren, J. S.; Qu, X. G. Nanocomposite incorporating V2O5 nanowires and gold nanoparticles for mimicking an enzyme cascade reaction and its application in the detection of biomolecules. Chem. Eur. J. 2014, 20, 7501–7506.

    Article  CAS  Google Scholar 

  36. Tao, Y.; Ju, E. G.; Ren, J. S.; Qu, X. G. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015, 27, 1097–1104.

    Article  CAS  Google Scholar 

  37. Nagvenkar, A. P.; Gedanken, A. Cu0.89Zn0.11O, a new peroxidasemimicking nanozyme with high sensitivity for glucose and antioxidant detection. ACS Appl. Mater. Interfaces 2016, 8, 22301–22308.

    Article  CAS  Google Scholar 

  38. Sun, L. F.; Ding, Y. Y.; Jiang, Y. L.; Liu, Q. Y. Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sens. Actuators B Chem. 2017, 239, 848–856.

    Article  CAS  Google Scholar 

  39. Zhao, Z. H.; Huang, Y. J.; Liu, W. R.; Ye, F. G.; Zhao, S. L. Immobilized glucose oxidase on boronic acid-functionalized hierarchically porous MOF as an integrated nanozyme for one-step glucose detection. ACS Sustainable Chem. Eng. 2020, 8, 4481–4488.

    Article  CAS  Google Scholar 

  40. Li, T.; Hu, P.; Li, J. W.; Huang, P. T.; Tong, W. J.; Gao, C. Y. Enhanced peroxidase-like activity of Fe@PCN-224 nanoparticles and their applications for detection of H2O2 and glucose. Colloids Surf. A Physicochem. Eng. Aspects 2019, 577, 456–463.

    Article  CAS  Google Scholar 

  41. Chen, Z. W.; Yin, J. J.; Zhou, Y. T.; Zhang, Y.; Song, L. N.; Song, M. J.; Hu, S. L.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012, 6, 4001–4012.

    Article  CAS  Google Scholar 

  42. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  CAS  Google Scholar 

  43. Reyhani, A.; Nothling, M. D.; Ranji-Burachaloo, H.; McKenzie, T. G.; Fu, Q.; Tan, S.; Bryant, G.; Qiao, G. G. Blood-catalyzed RAFT polymerization. Angew. Chem., Int. Ed. 2018, 57, 10288–10292.

    Article  CAS  Google Scholar 

  44. Gao, C.; Chen, S.; Quan, X.; Yu, H. T.; Zhang, Y. B. Enhanced fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants. J. Catal. 2017, 356, 125–132.

    Article  CAS  Google Scholar 

  45. Georgi, A.; Polo, M. V.; Crincoli, K.; Mackenzie, K.; Kopinke, F. D. Accelerated catalytic fenton reaction with traces of iron: An Fe-Pd-multicatalysis approach. Environ. Sci. Technol. 2016, 50, 5882–5891.

    Article  CAS  Google Scholar 

  46. Lin, S. S.; Gurol, M. D. Catalytic decomposition of hydrogen peroxide on iron oxide: Kinetics, mechanism, and implications. Environ. Sci. Technol. 1998, 32, 1417–1423.

    Article  CAS  Google Scholar 

  47. Raja, D. S.; Chuah, X. F.; Lu, S. Y. In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv. Energy Mater. 2018, 8, 1801065.

    Article  Google Scholar 

  48. Yuan, S.; Bo, X. J.; Guo, L. P. In-situ growth of iron-based metal—organic framework crystal on ordered mesoporous carbon for efficient electrocatalysis of p-Nitrotoluene and hydrazine. Anal. Chim. Acta. 2018, 1024, 73–83.

    Article  CAS  Google Scholar 

  49. Gomes, A.; Fernandes, E.; Lima, J. L. F. C. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 2005, 65, 45–80.

    Article  CAS  Google Scholar 

  50. Soh, N. Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal. Bioanal. Chem. 2006, 386, 532–543.

    Article  CAS  Google Scholar 

  51. Ji, X. Y.; Su, Z. G.; Wang, P.; Ma, G. H.; Zhang, S. P. “Ready-to-use” hollow nanofiber membrane-based glucose testing strips. Analyst 2014, 139, 6467–6473.

    Article  CAS  Google Scholar 

  52. Xing, M. Y.; Xu, W. J.; Dong, C. C.; Bai, Y. C.; Zeng, J. B.; Zhou, Y.; Zhang, J. L.; Yin, Y. D. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 2018, 4, 1359–1372.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 21705117, 21575115, 21904095, and 22004089), Program of Tianjin Science and Technology Major Project and Engineering (No. 19ZXYXSY00090), the Program for Chang Jiang Scholars and Innovative Research Team, Ministry of Education, China (No. IRT-16R61), Special Fund Project for the Central Government to Guide Local Science and Technology Development (2020), and the Applied Fundamental Research Fund of Sichuan Province (No. 2019YJ0169), and the new scholar fund of UESTC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Zhang or Xiaoquan Lu.

Electronic Supplementary Material

12274_2021_3406_MOESM1_ESM.pdf

Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal—organic framework hybrid nanozymes for ultrasensitive detection of glucose

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhao, J., Li, S. et al. Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal—organic framework hybrid nanozymes for ultrasensitive detection of glucose. Nano Res. 14, 4689–4695 (2021). https://doi.org/10.1007/s12274-021-3406-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3406-z

Keywords

Navigation