Skip to main content
Log in

Polymersome formation by solvent annealing-induced structural reengineering under 3D soft confinement

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A solvent annealing-induced structural reengineering approach is exploited to fabricate polymersomes from block copolymers that are hard to form vesicles through the traditional solution self-assembly route. More specifically, polystyrene-b-poly(4-vinyl pyridine) (PS-b-P4VP) particles with sphere-within-sphere structure (SS particles) are prepared by three-dimensional (3D) soft-confined assembly through emulsion-solvent evaporation, followed by 3D soft-confined solvent annealing upon the SS particles in aqueous dispersions for structural engineering. A water-miscible solvent (e.g., THF) is employed for annealing, which results in dramatic transitions of the assemblies, e.g., from SS particles to polymersomes. This approach works for PS-b-P4VP in a wide range of block ratios. Moreover, this method enables effective encapsulation/loading of cargoes such as fluorescent dyes and metal nanoparticles, which offers a new route to prepare polymersomes that could be applied for cargo release, diagnostic imaging, and nanoreactor, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, F. Y. K.; Gao, J. Y.; Xiao, J. G.; Du, J. Z. Dually gated polymersomes for gene delivery. Nano Lett. 2018, 18, 5562–5568.

    Article  CAS  Google Scholar 

  2. Wang, Y. R.; Yin, T. H.; Su, Z. W.; Qiu, C.; Wang, Y.; Zheng, R. Q.; Chen, M. W.; Shuai, X. T. Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery. Nano Res. 2018, 11, 3710–3721.

    Article  CAS  Google Scholar 

  3. Messager, L.; Burns, J. R.; Kim, J.; Cecchin, D.; Hindley, J.; Pyne, A. L. B.; Gaitzsch, J.; Battaglia, G.; Howorka, S. Biomimetic hybrid nanocontainers with selective permeability. Angew. Chem., Int. Ed. 2016, 55, 11106–11109.

    Article  CAS  Google Scholar 

  4. Gaitzsch, J.; Huang, X.; Voit, B. Engineering functional polymer capsules toward smart nanoreactors. Chem. Rev. 2016, 116, 1053–1093.

    Article  CAS  Google Scholar 

  5. Liu, Y. J.; Yang, X. Y.; Huang, Z. Q.; Huang, P.; Zhang, Y.; Deng, L.; Wang, Z. T.; Zhou, Z. J.; Liu, Y.; Kalish, H. et al. Magnetoplasmonic Janus vesicles for magnetic field-enhanced photoacoustic and magnetic resonance imaging of tumors. Angew. Chem., Int. Ed. 2016, 55, 15297–15300.

    Article  CAS  Google Scholar 

  6. Mabire, A. B.; Robin, M. P.; Willcock, H.; Pitto-Barry, A.; Kirby, N.; O’Reilly, R. K. Dual effect of thiol addition on fluorescent polymeric micelles: On-to-OFF emissive switch and morphology transition. Chem. Commun. 2014, 50, 11492–11495.

    Article  CAS  Google Scholar 

  7. Yan, Q.; Yuan, J. Y.; Cai, Z. N.; Xin, Y.; Kang, Y.; Yin, Y. W. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J. Am. Chem. Soc. 2010, 132, 9268–9270.

    Article  CAS  Google Scholar 

  8. Deng, R. H.; Wang, Y. L.; Yang, L. S.; Bain, C. D. In situ fabrication of polymeric microcapsules by ink-jet printing of emulsions. ACS Appl. Mater. Interfaces 2019, 11, 40652–40661.

    Article  CAS  Google Scholar 

  9. Allen, S. D.; Liu, Y. G.; Bobbala, S.; Cai, L.; Hecker, P. I.; Temel, R.; Scott, E. A. Polymersomes scalably fabricated via flash nano-precipitation are non-toxic in non-human primates and associate with leukocytes in the spleen and kidney following intravenous administration. Nano Res. 2018, 11, 5689–5703.

    Article  CAS  Google Scholar 

  10. Wajs, E.; Nielsen, T. T.; Larsen, K. L.; Fragoso, A. Preparation of stimuli-responsive nano-sized capsules based on cyclodextrin polymers with redox or light switching properties. Nano Res. 2016, 9, 2070–2078.

    Article  CAS  Google Scholar 

  11. Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985.

    Article  CAS  Google Scholar 

  12. Ma, L.; Eisenberg, A. Relationship between wall thickness and size in block copolymer vesicles. Langmuir 2009, 25, 13730–13736.

    Article  CAS  Google Scholar 

  13. Li, D.; Huo, M.; Liu, L.; Zeng, M.; Chen, X.; Wang, X. S.; Yuan, J. Y. Overcoming kinetic trapping for morphology evolution during polymerization-induced self-assembly. Macromol. Rapid Commun. 2019, 40, 1900202.

    Article  Google Scholar 

  14. Hu, Y.; Chen, Y. M.; Du, J. Z. Evolution of diverse higher-order membrane structures of block copolymer vesicles. Polym. Chem. 2019, 10, 3020–3029.

    Article  CAS  Google Scholar 

  15. Liu, D. Q.; Cornel, E. J.; Du, J. Z. Renoprotective angiographic polymersomes. Adv. Funct. Mater. 2020, 31, 2007330.

    Article  Google Scholar 

  16. Liu, G. H.; Wang, X. R.; Hu, J. M.; Zhang, G. Y.; Liu, S. Y. Self-immolative polymersomes for high-efficiency triggered release and programmed enzymatic reactions. J. Am. Chem. Soc. 2014, 136, 7492–7497.

    Article  CAS  Google Scholar 

  17. Derry, M. J.; Mykhaylyk, O. O.; Armes, S. P. A vesicle-to-worm transition provides a new high-temperature oil thickening mechanism. Angew. Chem., Int. Ed. 2017, 56, 1746–1750.

    Article  CAS  Google Scholar 

  18. Ratcliffe, L. P. D.; Derry, M. J.; Ianiro, A.; Tuinier, R.; Armes, S. P. A single thermoresponsive diblock copolymer can form spheres, worms or vesicles in aqueous solution. Angew. Chem., Int. Ed. 2019, 131, 19140–19146.

    Article  Google Scholar 

  19. Huo, M.; Xu, Z. Y.; Zeng, M.; Chen, P. Y.; Liu, L.; Yan, L. T.; Wei, Y.; Yuan, J. Y. Controlling vesicular size via topological engineering of amphiphilic polymer in polymerization-induced self-assembly. Macromolecules 2017, 50, 9750–9759.

    Article  CAS  Google Scholar 

  20. Luo, L. B.; Eisenberg, A. One-step preparation of block copolymer vesicles with preferentially segregated acidic and basic corona chains. Angew. Chem., Int. Ed. 2002, 41, 1001–1004.

    Article  CAS  Google Scholar 

  21. Deng, R. H.; Liang, F. X.; Qu, X. Z.; Wang, Q.; Zhu, J. T.; Yang, Z. Z. Diblock copolymer based Janus nanoparticles. Macromolecules 2015, 48, 750–755.

    Article  CAS  Google Scholar 

  22. Deng, R. H.; Liu, S. Q.; Li, J. Y.; Liao, Y. G.; Tao, J.; Zhu, J. T. Mesoporous block copolymer nanoparticles with tailored structures by hydrogen-bonding-assisted self-assembly. Adv. Mater. 2012, 24, 1889–1893.

    Article  CAS  Google Scholar 

  23. Deng, R. H.; Xu, J. P.; Yi, G. R.; Kim, J. W.; Zhu, J. T. Responsive colloidal polymer particles with ordered mesostructures. Adv. Funct. Mater. in press, DOI: https://doi.org/10.1002/adfm.202008169.

  24. Wong, C. K.; Qiang, X. L.; Müller, A. H. E.; Gröschel, A. H. Self-assembly of block copolymers into internally ordered microparticles. Prog. Polym. Sci. 2020, 102, 101211.

    Article  CAS  Google Scholar 

  25. Yan, N.; Zhu, Y. T.; Jiang, W. Recent progress in the self-assembly of block copolymers confined in emulsion droplets. Chem. Commun. 2018, 54, 13183–13195.

    Article  CAS  Google Scholar 

  26. Yan, N.; Liu, X. J.; Zhu, J. T.; Zhu, Y.; Jiang, W. Well-ordered inorganic nanoparticle arrays directed by block copolymer nanosheets. ACS Nano 2019, 13, 6638–6646.

    Article  CAS  Google Scholar 

  27. Lee, J.; Ku, K. H.; Kim, J.; Lee, Y. J.; Jang, S. G.; Kim, B. J. Light-responsive, shape-switchable block copolymer particles. J. Am. Chem. Soc. 2019, 141, 15348–15355.

    Article  CAS  Google Scholar 

  28. Chi, P.; Wang, Z.; Li, B. H.; Shi, A. C. Soft confinement-induced morphologies of diblock copolymers. Langmuir 2011, 27, 11683–11689.

    Article  CAS  Google Scholar 

  29. Lv, F.; An, Z. S.; Wu, P. Y. Scalable preparation of alternating block copolymer particles with inverse bicontinuous mesophases. Nat. Commun. 2019, 10, 1397.

    Article  Google Scholar 

  30. Lv, F.; An, Z. S.; Wu, P. Y. Efficient access to inverse bicontinuous mesophases via polymerization-induced cooperative assembly. CCS Chem. 2020, 2, 2211–2222.

    Google Scholar 

  31. Higuchi, T.; Motoyoshi, K.; Sugimori, H.; Jinnai, H.; Yabu, H.; Shimomura, M. Phase transition and phase transformation in block copolymer nanoparticles. Macromol. Rapid Commun. 2010, 31, 1773–1778.

    Article  CAS  Google Scholar 

  32. Higuchi, T.; Tajima, A.; Motoyoshi, K.; Yabu, H.; Shimomura, M. Frustrated phases of block copolymers in nanoparticles. Angew. Chem., Int. Ed. 2008, 47, 8044–8046.

    Article  CAS  Google Scholar 

  33. Varadharajan, D.; Turgut, H.; Lahann, J.; Yabu, H.; Delaittre, G. Surface-reactive patchy nanoparticles and nanodiscs prepared by tandem nanoprecipitation and internal phase separation. Adv. Funct. Mater. 2018, 28, 1800846.

    Article  Google Scholar 

  34. Shin, J. J.; Kim, E. J.; Ku, K. H.; Lee, Y. J.; Hawker, C. J.; Kim, B. J. 100th anniversary of macromolecular science viewpoint: Block copolymer particles: Tuning shape, interfaces, and morphology. ACS Macro Lett. 2020, 9, 306–317.

    Article  CAS  Google Scholar 

  35. Shi, A. C.; Li, B. H. Self-assembly of diblock copolymers under confinement. Soft Matter 2013, 9, 1398–1413.

    Article  CAS  Google Scholar 

  36. Qiang, X. L.; Franzka, S.; Dai, X. Z.; Gröschel, A. H. Multicompartment microparticles of SBT triblock terpolymers through 3D confinement assembly. Macromolecules 2020, 53, 4224–4233.

    Article  CAS  Google Scholar 

  37. Yan, N.; Zhu, Y. T.; Jiang, W. Self-assembly of AB diblock copolymer confined in a soft nano-droplet: A combination study by Monte Carlo simulation and experiment. J. Phys. Chem. B 2016, 120, 12023–12029.

    Article  CAS  Google Scholar 

  38. Lee, J.; Ku, K. H.; Park, C. H.; Lee, Y. J.; Yun, H.; Kim, B. J. Shape and color switchable block copolymer particles by temperature and pH dual responses. ACS Nano 2019, 13, 4230–4237.

    Article  CAS  Google Scholar 

  39. Li, Y. L.; Chen, X.; Geng, H. K.; Dong, Y.; Wang, B.; Ma, Z.; Pan, L.; Ma, G. Q.; Song, D. P.; Li, Y. S. Oxidation control of bottlebrush molecular conformation for producing libraries of photonic structures. Angew. Chem., Int. Ed. 2021, 133, 3691–3697.

    Article  Google Scholar 

  40. Li, L.; Matsunaga, K.; Zhu, J. T.; Higuchi, T.; Yabu, H.; Shimomura, M.; Jinnai, H.; Hayward, R. C.; Russell, T. P. Solvent-driven evolution of block copolymer morphology under 3D confinement. Macromolecules 2010, 43, 7807–7812.

    Article  CAS  Google Scholar 

  41. Shin, J. M.; Lee, Y. J.; Kim, M.; Ku, K. H.; Lee, J.; Kim, Y.; Yun, H.; Liao, K.; Hawker, C. J.; Kim, B. J. Development of shape-tuned, monodisperse block copolymer particles through solvent-mediated particle restructuring. Chem. Mater. 2019, 31, 1066–1074.

    Article  CAS  Google Scholar 

  42. Fan, H. L.; Jin, Z. X. Selective swelling of block copolymer nanoparticles: Size, nanostructure, and composition. Macromolecules 2014, 47, 2674–2681.

    Article  CAS  Google Scholar 

  43. Mei, S. L.; Jin, Z. X. Mesoporous block-copolymer nanospheres prepared by selective swelling. Small 2013, 9, 322–329.

    Article  CAS  Google Scholar 

  44. Ji, X. H.; Song, X. N.; Li, J.; Bai, Y. B.; Yang, W. S.; Peng, X. G. Size control of gold nanocrystals in citrate reduction: The third role of citrate. J. Am. Chem. Soc. 2007, 129, 13939–13948.

    Article  CAS  Google Scholar 

  45. Deng, R. H.; Liang, F. X.; Li, W. K.; Yang, Z. Z.; Zhu, J. T. Reversible transformation of nanostructured polymer particles. Macromolecules 2013, 46, 7012–7017.

    Article  CAS  Google Scholar 

  46. Deng, R. H.; Li, H.; Liang, F. X.; Zhu, J. T.; Li, B. H.; Xie, X. L.; Yang, Z. Z. Soft colloidal molecules with tunable geometry by 3D confined assembly of block copolymers. Macromolecules 2015, 48, 5855–5860.

    Article  CAS  Google Scholar 

  47. Lovett, J. R.; Warren, N. J.; Ratcliffe, L. P. D.; Kocik, M. K.; Armes, S. P. pH-responsive non-ionic diblock copolymers: Ionization of carboxylic acid end-groups induces an order-order morphological transition. Angew. Chem., Int. Ed. 2015, 54, 1279–1283.

    Article  CAS  Google Scholar 

  48. Weisbord, I.; Shomrat, N.; Moshe, H.; Sosnik, A.; Segal-Peretz, T. Nano spray-dried block copolymer nanoparticles and their transformation into hybrid and inorganic nanoparticles. Adv. Funct. Mater. 2020, 30, 1808932.

    Article  CAS  Google Scholar 

  49. Xu, M.; Ku, K. H.; Lee, Y. J.; Shin, J. J.; Kim, E. J.; Jang, S. G.; Yun, H.; Kim, B. J. Entropy-driven assembly of nanoparticles within emulsion-evaporative block copolymer particles: Crusted, seeded, and alternate-layered onions. Chem. Mater. 2020, 32, 7036–7043.

    Article  CAS  Google Scholar 

  50. Yan, N.; Liu, H. X.; Zhu, Y. T.; Jiang, W.; Dong, Z. Y. Entropy-driven hierarchical nanostructures from cooperative self-assembly of gold nanoparticles/block copolymers under three-dimensional confinement. Macromolecules 2015, 48, 5980–5987.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 52003094), and the Fundamental Research Funds for the Central Universities (No. 2020kfyXJJS011). We also acknowledge HUST Analytical and Testing Center for providing characterization services.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renhua Deng or Jintao Zhu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Li, H., Kim, J. et al. Polymersome formation by solvent annealing-induced structural reengineering under 3D soft confinement. Nano Res. 14, 4644–4649 (2021). https://doi.org/10.1007/s12274-021-3396-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3396-x

Keywords

Navigation