Skip to main content
Log in

Investigation on the adhesive contact and electrical performance for triboelectric nanogenerator considering polymer viscoelasticity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The triboelectric nanogenerator (TENG) is a new mechanical energy harvesting technology in which the typical viscoelastic material polydimethylsiloxane (PDMS) is widely used. Micro-/nano-textures are often fabricated on the PDMS surface to enhance the electrical performance of TENG. As the contact region decreases to micro/nano scale, the adhesive forces become dominant. However, there is still a lack of contact mechanics model considering both material viscoelasticity and the adhesive forces to guide the surface texture design. In this paper, the explicit data-fitting formulas based on the fractional derivative Zener model are firstly derived to identify the viscoelastic constitutive parameters, which can not only avoid the influence of the initial contact point, but also ensure the accurate conversion between the creep compliance and the relaxation modulus function. Then a viscoelastic-adhesive contact model based on the fitted constitutive parameters is established, and the numerical algorithms such as bi-conjugate stabilized (Bi-CGSTAB) method and fast Fourier transform (FFT) technique are employed to analyze the effects of material viscoelasticity and texture sizes on the contact and electrical performance. It is shown that, compared with results from the elastic-adhesive contact model, the contact area ratio based on the viscoelastic-adhesive contact model is significantly larger, which is much closer to the experimental results. Among the selected sizes of pyramid texture, the higher electrical performance can be obtained from the textures with a smaller pitch and a larger width under the heavier applied load. This study can provide a theoretical reference for the design of viscoelastic surface texture of TENG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

    Article  Google Scholar 

  2. Zhang, N.; Qin, C.; Feng, T. X.; Li, J.; Yang, Z. R.; Sun, X. P.; Liang, E. J.; Mao, Y. C.; Wang, X. D. Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics. Nano Res. 2020, 13, 1903–1907.

    Article  Google Scholar 

  3. Liu, W. L.; Wang, Z.; Wang, G.; Liu, G. L.; Chen, J.; Pu, X. J.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 2019, 10, 1426.

    Article  Google Scholar 

  4. Hu, J.; Pu, X. J.; Yang, H. M.; Zeng, Q. X.; Tang, Q.; Zhang, D. Z.; Hu, C. G.; Xi, Y. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Res. 2019, 12, 3018–3023.

    Article  Google Scholar 

  5. Tang, Y. J.; Zhou, H.; Sun, X. P.; Diao, N. H.; Wang, J. B.; Zhang, B. S.; Qin, C.; Liang, E. J.; Mao, Y. C. Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 2020, 30, 1907893.

    Article  CAS  Google Scholar 

  6. Chen, B. D.; Tang, W.; Zhang, C.; Xu, L.; Zhu, L. P.; Yang, L. J.; He, C.; Chen, J.; Liu, L.; Zhou, T. et al. Au nanocomposite enhanced electret film for triboelectric nanogenerator. Nano Res. 2018, 11, 3096–3105.

    Article  CAS  Google Scholar 

  7. Zou, Y.; Tan, P. C.; Shi, B. J.; Ouyang, H.; Jiang, D. J.; Liu, Z.; Li, H.; Yu, M.; Wang, C.; Qu, X. C. et al. A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 2019, 10, 2695.

    Article  Google Scholar 

  8. Xia, X. N.; Chen, J.; Guo, H. Y.; Liu, G. L.; Wei, D. P.; Xi, Y.; Wang, X.; Hu, C. G. Embedding variable micro-capacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator. Nano Res. 2017, 10, 320–330.

    Article  CAS  Google Scholar 

  9. Trinh, V. T.; Chung, C. K. A facile method and novel mechanism using microneedle-structured PDMS for triboelectric generator applications. Small 2017, 13, 1700373.

    Article  Google Scholar 

  10. He, X. M.; Mu, X. J.; Wen, Q.; Wen, Z. Y.; Yang, J.; Hu, C. G.; Shi, H. F. Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film. Nano Res. 2016, 9, 3714–3724.

    Article  CAS  Google Scholar 

  11. Zhang, X. S.; Han, M. D.; Meng, B.; Zhang, H. X. High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies. Nano Energy 2015, 11, 304–322.

    Article  CAS  Google Scholar 

  12. Yu, J. B.; Hou, X. J.; Cui, M.; Shi, S. Z.; He, J.; Sun, Y. W.; Wang, C.; Chou, X. J. Flexible PDMS-based triboelectric nanogenerator for instantaneous force sensing and human joint movement monitoring. Sci China Mater. 2019, 62, 1423–1432.

    Article  CAS  Google Scholar 

  13. Seol, M. L.; Lee, S. H.; Han, J. W.; Kim, D.; Cho, G. H.; Choi, Y. K. Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy 2015, 17, 63–71.

    Article  CAS  Google Scholar 

  14. Jin, C. R.; Kia, D. S.; Jones, M.; Towfighian, S. On the contact behavior of micro-/nano-structured interface used in vertical-contact-mode triboelectric nanogenerators. Nano Energy 2016, 27, 68–77.

    Article  CAS  Google Scholar 

  15. Yang, W. X.; Wang, X. L.; Li, H. Q.; Wu, J.; Hu, Y. Q. Comprehensive contact analysis for vertical-contact-mode triboelectric nanogenerators with micro-/nano-textured surfaces. Nano Energy 2018, 51, 241–249.

    Article  CAS  Google Scholar 

  16. Zhang, L.; Jackson, W. J.; Bentil, S. A. The mechanical behavior of brain surrogates manufactured from silicone elastomers. J. Mech. Behav. Biomed. Mater. 2019, 95, 180–190.

    Article  CAS  Google Scholar 

  17. Niu, Y.; Zhang, X.; Si, T.; Zhang, Y. T.; Qi, L.; Zhao, G.; Xu, R. X.; He, X. M.; Zhao, Y. Simultaneous measurements of geometric and viscoelastic properties of hydrogel microbeads using continuous-flow microfluidics with embedded electrodes. Small 2017, 13, 1702821.

    Article  Google Scholar 

  18. Wang, Z. X.; Volinsky, A. A.; Gallant, N. D. Nanoindentation study of polydimethylsiloxane elastic modulus using Berkovich and flat punch tips. J. Appl. Polym. Sci. 2015, 132, 41384.

    Google Scholar 

  19. Du, P.; Lin, I. K.; Lu, H. B.; Zhang, X. Extension of the beam theory for polymer bio-transducers with low aspect ratios and viscoelastic characteristics. J. Micromech. Microeng. 2010, 20, 095016.

    Article  Google Scholar 

  20. Wei, L. F.; Li, W.; Feng, Z. Q.; Liu, J. T. Applying the fractional derivative Zener model to fitting the time-dependent material viscoelasticity tested by nanoindentation. Biosurf. Biotribol. 2018, 4, 58–67.

    Article  Google Scholar 

  21. Xiao, R.; Sun, H. G.; Chen, W. An equivalence between generalized Maxwell model and fractional Zener model. Mech. Mater. 2016, 100, 148–153.

    Article  Google Scholar 

  22. Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; Imperial College Press: London, 2010.

    Book  Google Scholar 

  23. Garrappa, R. Numerical evaluation of two and three parameter mittag-leffler functions. SIAM J. Numer. Anal. 2015, 53, 1350–1369.

    Article  Google Scholar 

  24. Harding, J. W.; Sneddon, I. N. The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch. Math. Proc. Camb. Philos. Soc. 1945, 41, 16–26.

    Article  Google Scholar 

  25. Chen, W. W.; Wang, Q. J.; Huan, Z.; Luo, X. Semi-analytical viscoelastic contact modeling of polymer-based materials. J. Tribol. 2011, 133, 041404.

    Article  Google Scholar 

  26. Horn, R. G.; Smith, D. T. Contact electrification and adhesion between dissimilar materials. Science 1992, 256, 362–364.

    Article  CAS  Google Scholar 

  27. Zhang, Y. Y.; Wang, X. L.; Li, H. Q.; Wang, B. Adhesive behavior of micro/nano-textured surfaces. Appl. Surf. Sci. 2015, 329, 174–183.

    Article  CAS  Google Scholar 

  28. Liu, S. B.; Wang, Q.; Liu, G. A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses. Wear 2000, 243, 101–111.

    Article  CAS  Google Scholar 

  29. Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nano-generators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

    Article  Google Scholar 

  30. Yang, W. X.; Wang, X. L.; Li, H. Q.; Song, X. T. Effects of hierarchical structures and insulating liquid media on adhesion. Appl. Surf. Sci. 2017, 423, 891–899.

    Article  CAS  Google Scholar 

  31. Lee, E. H.; Radok, J. R. M. The contact problem for viscoelastic bodies. J. Appl. Mech. 1960, 27, 438–444.

    Article  Google Scholar 

  32. Yang, W. X.; Wang, X. L.; Li, H. Q.; Wu, J.; Hu, Y. Q.; Li, Z. H.; Liu, H. Fundamental research on the effective contact area of micro-/nano-textured surface in triboelectric nanogenerator. Nano Energy 2019, 57, 41–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (Nos. 51735001 and 11472046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Wang.

Electronic Supplementary Material

12274_2021_3393_MOESM1_ESM.pdf

Investigation on the adhesive contact and electrical performance for triboelectric nanogenerator considering polymer viscoelasticity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wang, X., Hu, Y. et al. Investigation on the adhesive contact and electrical performance for triboelectric nanogenerator considering polymer viscoelasticity. Nano Res. 14, 4625–4633 (2021). https://doi.org/10.1007/s12274-021-3393-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3393-0

Keywords

Navigation