Skip to main content
Log in

Probing self-optimization of carbon support in oxygen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Despite acknowledgment of structural reconstruction of materials following oxygen evolution reaction (OER) reaction, the role of support during the reconstruction process has been ignored. Given this, we directly in situ transform the residual iron present in raw single-walled carbon nanotubes (SWCNT) into Fe2O3 and thus build Fe2O3-CNT as the model system. Intriguingly, an anomalous self-optimization occurred on SWCNT and the derived components show satisfactory electrochemical performance. Soft X-ray absorption spectroscopy (sXAS) analysis and theory calculation correspondingly indicate that self-optimization yields stronger interaction between SWCNT and Fe2O3 nanoparticles, where the electrons migrate from Fe2O3 to optimized SWCNT. Such polarization will generate a positive charge center and thus boost the OER activity. This finding directly observes the self-optimization of support effect, providing a new perspective for OER and related electrochemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

    Article  CAS  Google Scholar 

  2. Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748–7759.

    Article  CAS  Google Scholar 

  3. Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem., Int. Ed. 2018, 57, 16166–16170.

    Article  CAS  Google Scholar 

  4. Dresp, S.; Luo, F.; Schmack, R.; Kühl, S.; Gliech, M.; Strasser, P. An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy Environ. Sci. 2016, 9, 2020–2024.

    Article  CAS  Google Scholar 

  5. Zhu, Y. P.; Guo, C. X.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915–923.

    Article  CAS  Google Scholar 

  6. Cao, D. F.; Liu, D. B.; Chen, S. M.; Moses, O. A.; Chen, X. J.; Xu, W. J.; Wu, C. Q.; Zheng, L. R.; Chu, S. Q.; Jiang, H. L. et al. Operando X-ray spectroscopy visualizing the chameleon-like structural reconstruction on an oxygen evolution electrocatalyst. Energy Environ. Sci. 2021, DOI: https://doi.org/10.1039/D0EE02276D.

  7. Jiang, H. L.; He, Q.; Zhang, Y. K.; Song, L. Structural self-reconstruction of catalysts in electrocatalysis. Acc. Chem. Res. 2018, 57, 2968–2977.

    Article  Google Scholar 

  8. Nam, D. H.; Bushuyev, O. S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C. T.; De Arquer, F. P. G.; Wang, Y. H.; Liang, Z. Q.; Proppe, A. H. et al. Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 11378–11386.

    Article  CAS  Google Scholar 

  9. Sato, Y.; Kowalski, D.; Aoki, Y.; Habazaki, H. Long-term durability of platelet-type carbon nanofibers for OER and ORR in highly alkaline media. Appl. Catal. A Gen. 2020, 597, 117555.

    Article  CAS  Google Scholar 

  10. Singh, H.; Zhuang, S. Q.; Ingis, B.; Nunna, B. B.; Lee, E. S. Carbon-based catalysts for oxygen reduction reaction: A review on degradation mechanisms. Carbon 2019, 151, 160–174.

    Article  CAS  Google Scholar 

  11. Ross, P. N.; Sokol, H. The corrosion of carbon-black anodes in alkaline electrolyte: I. Acetylene black and the effect of cobalt catalyzation. J. Electrochem. Soc. 1984, 131, 1742–1750.

    Article  CAS  Google Scholar 

  12. Pérez-Rodríguez, S.; Sebastián, D.; Lazáro, M. J. Insights on the electrochemical oxidation of ordered mesoporous carbons. J. Electrochem. Soc. 2020, 167, 024511.

    Article  Google Scholar 

  13. Wang, H. F.; Chen, R. X.; Feng, J. Y.; Qiao, M.; Doszczeczko, S.; Zhang, Q.; Jorge, A. B.; Titirici, M. M. Freestanding non-precious metal electrocatalysts for oxygen evolution and reduction reactions. ChemelEctroChem 2018, 5, 1786–1804.

    Article  CAS  Google Scholar 

  14. Filimonenkov, I. S.; Bouillet, C.; Kéranguéven, G.; Simonov, P. A.; Tsirlina, G. A.; Savinova, E. R. Carbon materials as additives to the OER catalysts: RRDE study of carbon corrosion at high anodic potentials. Electrochim. Acta 2019, 321, 134657.

    Article  CAS  Google Scholar 

  15. Yang, J. C.; Park, S.; Choi, K. Y.; Park, H. S.; Cho, Y. G.; Ko, H.; Song, H. K. Activity-durability coincidence of oxygen evolution reaction in the presence of carbon corrosion: Case study of MnCo2O4 spinel with carbon black. ACS Sustainable Chem. Eng. 2018, 6, 9566–9571.

    Article  CAS  Google Scholar 

  16. Jang, S. E.; Kim, H. Effect of water electrolysis catalysts on carbon corrosion in polymer electrolyte membrane fuel cells. J. Am. Chem. Soc. 2010, 132, 14700–14701.

    Article  CAS  Google Scholar 

  17. Yi, Y. M.; Tornow, J.; Willinger, E.; Willinger, M. G.; Ranjan, C.; Schlögl, R. Electrochemical degradation of multiwall carbon nanotubes at high anodic potential for oxygen evolution in acidic media. ChemElectroChem 2015, 2, 1929–1937.

    Article  CAS  Google Scholar 

  18. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Dai, H. J. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013–2036.

    Article  CAS  Google Scholar 

  19. Liang, Y. Y.; Wang, H. L.; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849–15857.

    Article  CAS  Google Scholar 

  20. Wu, H.; Yang, T.; Du, Y. H.; Shen, L.; Ho, G. W. Identification of facet-governing reactivity in hematite for oxygen evolution. Adv. Mater. 2018, 30, 1804341.

    Article  Google Scholar 

  21. McIntyre, N. S.; Zetaruk, D. G. X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 1977, 49, 1521–1529.

    Article  CAS  Google Scholar 

  22. Allen, G. C.; Curtis, M. T.; Hooper, A. J.; Tucker, P. M. X-ray photoelectron spectroscopy of iron-oxygen systems. J. Chem. Soc. Dalton Trans. 1974, 1525–1530.

  23. Sun, S. N.; Li, H. Y.; Xu, Z. J. Impact of surface area in evaluation of catalyst activity. Joule 2018, 2, 1024–1027.

    Article  Google Scholar 

  24. Yang, X. L.; Li, H. N.; Lu, A. Y.; Min, S. X.; Idriss, Z.; Hedhili, M. N.; Huang, K. W.; Idriss, H.; Li, L. J. Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts. Nano Energy 2016, 25, 42–50.

    Article  CAS  Google Scholar 

  25. Shao, Y. Y.; Dodelet, J. P.; Wu, G.; Zelenay, P. PGM-Free cathode catalysts for PEM fuel cells: A mini-review on stability challenges. Adv. Mater. 2019, 31, 1807615.

    Article  Google Scholar 

  26. Kuznetsova, A.; Popova, I.; Yates, J. T., Jr.; Bronikowski, M. J.; Huffman, C. B.; Liu, J.; Smalley, R. E.; Hwu, H. H.; Chen, J. G. Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J. Am. Chem. Soc. 2001, 123, 10699–10704.

    Article  CAS  Google Scholar 

  27. Feng, X. F.; Song, M. K.; Stolte, W. C.; Gardenghi, D.; Zhang, D.; Sun, X. H.; Zhu, J. F.; Cairns, E. J.; Guo, J. H. Understanding the degradation mechanism of rechargeable lithium/sulfur cells: A comprehensive study of the sulfur-graphene oxide cathode after discharge-charge cycling. Phys. Chem. Chem. Phys. 2014, 16, 16931–16940.

    Article  CAS  Google Scholar 

  28. Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

    Article  CAS  Google Scholar 

  29. Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523.

    Article  CAS  Google Scholar 

  30. Wu, J.; Xue, Y.; Yan, X.; Yan, W. S.; Cheng, Q. M.; Xie, Y. Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res. 2012, 5, 521–530.

    Article  CAS  Google Scholar 

  31. Augustsson, A.; Herstedt, M.; Guo, J. H.; Edström, K.; Zhuang, G. V.; Ross, P. N. Jr.; Rubensson, J. E.; Nordgren, J. Solid electrolyte interphase on graphite Li-ion battery anodes studied by soft X-ray spectroscopy. Phys. Chem. Chem. Phys. 2004, 6, 4185–4189.

    Article  CAS  Google Scholar 

  32. He, K.; Tsega, T. T.; Liu, X.; Zai, J. T.; Li, X. H.; Liu, X. J.; Li, W. H.; Ali, N.; Qian, X. F. Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 11903–11909.

    Article  CAS  Google Scholar 

  33. Lin, Y. X.; Yang, L.; Zhang, Y. K.; Jiang, H. L.; Xiao, Z. J.; Wu, C. Q.; Zhang, G. B.; Jiang, J.; Song, L. Defective Carbon-CoP nanoparticles hybrids with interfacial charges polarization for efficient bifunctional oxygen electrocatalysis. Adv. Energy Mater. 2018, 8, 1703623.

    Article  Google Scholar 

  34. Song, L.; Ci, L.; Lv, L.; Zhou, Z.; Yan, X.; Liu, D.; Yuan, H.; Gao, Y.; Wang, J.; Liu, L. et al. Direct synthesis of a macroscale single-walled carbon nanotube non-woven material. Adv. Mater. 2004, 16, 1529–1534.

    Article  CAS  Google Scholar 

  35. Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad.2005, 12, 537–541.

    Article  CAS  Google Scholar 

  36. Cao, D. F.; Ye, K.; Moses, O. A.; Xu, W. J.; Liu, D. B.; Song, P.; Wu, C. Q.; Wang, C. D.; Ding, S. Q.; Chen, S. M. et al. Engineering the in-plane structure of metallic phase molybdenum disulfide via Co and O dopants toward efficient alkaline hydrogen evolution. ACS Nano 2019, 13, 11733–11740.

    Article  CAS  Google Scholar 

  37. Cui, B.; Lin, H.; Li, J. B.; Li, X.; Yang, J.; Tao, J. Core-ring structured NiCo2O4 nanoplatelets: Synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 2008, 18, 1440–1447.

    Article  CAS  Google Scholar 

  38. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  CAS  Google Scholar 

  39. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in Germanium. Phys. Rev. B 1994, 49, 14251–14269.

    Article  CAS  Google Scholar 

  40. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  41. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys. Rev. B 1998, 57, 1505–1509.

    Article  CAS  Google Scholar 

  42. Pozun, Z. D.; Henkelman, G. Hybrid density functional theory band structure engineering in hematite. J. Chem. Phys. 2011, 134, 224706.

    Article  Google Scholar 

  43. Adelstein, N.; Neaton, J. B.; Asta, M.; De Jonghe, L. C. Density functional theory based calculation of small-polaron mobility in hematite. Phys. Rev. B 2014, 89, 245115.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported in part by the National Key R&D Program of China (Nos. 2017YFA0303500 and 2020YFA0405800), National Natural Science Foundation of China (NSFC) (Nos. U1932201, U2032113, and 22075264), CAS Collaborative Innovation Program of Hefei Science Center (Nos. 2019HSC-CIP002 and 2020HSC-CIP002), the USTC Start-Up Fund, and CAS Interdisciplinary Innovation Team. L. S. acknowledges the support from Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University (111 projects, B12015). We thank the Beijing Synchrotron Radiation Facility (1W1B, BSRF), the Hefei Synchrotron Radiation Facility (MCD-A and MCD-B Soochow Beamline for Energy Materials at NSRL), and the USTC Center for Micro and Nanoscale Research and Fabrication for help in characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangming Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Cao, D., Moses, O.A. et al. Probing self-optimization of carbon support in oxygen evolution reaction. Nano Res. 14, 4534–4540 (2021). https://doi.org/10.1007/s12274-021-3368-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3368-1

Keywords

Navigation