Skip to main content
Log in

Two flexible cationic metal-organic frameworks with remarkable stability for CO2/CH4 separation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cationic azole-based metal-organic frameworks (MOFs) with remarkable stability and unique pore environment have aroused great research interests. Meanwhile, flexible MOFs which can undergo pore-structure changes upon exposure to external stimuli are ideal materials for gas separation. However, introducing flexibility into the framework of cationic azole-based MOFs is rarely reported. Herein, we synthesized two stable isomorphic cationic MOFs (M-btz-as, M = Co, Ni) based on a linear azole ligand. After activated at high temperature under vacuum, M-btz-ht (M = Co, Ni) were obtained and both MOFs exhibited flexible features in which Co-btz is more flexible than Ni-btz. Different solvent-mediated activation methods were employed to explore their effects on structural flexibility and produced MOFs with different phases. Continuous phase transformation of Co-btz-e was verified by powder X-ray diffraction. In addition, these MOF phases possessed different gas separation abilities affected by their flexible frameworks, and Co-btz-ht exhibited the highest CO2/CH4 separation ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828.

    Article  CAS  Google Scholar 

  2. Chen, Y. W.; Zhang, X.; Chen, H. Y.; Drout, R. J.; Chen, Z. J.; Mian, M. R.; Maldonado, R. R.; Ma, K. K.; Wang, X. K.; Xia, Q. B. et al. Tuning the atrazine binding sites in an indium-based flexible metal-organic framework. ACS Appl. Mater. Interfaces 2020, 12, 44762–44768.

    Article  CAS  Google Scholar 

  3. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  4. Si, Y. N.; He, X.; Jiang, J.; Duan, Z. M.; Wang, W. J.; Yuan, D. Q. Highly effective H2/D2 separation in a stable Cu-based metal-organic framework. Nano Res. 2021, 14, 518–525.

    Article  CAS  Google Scholar 

  5. Hou, J. W.; Sutrisna, P. D.; Wang, T. S.; Gao, S.; Li, Q.; Zhou, C.; Sun, S. J.; Yang, H. C.; Wei, F. X.; Ruggiero, M. T. et al. Unraveling the interfacial structure-performance correlation of flexible metal-organic framework membranes on polymeric substrates. ACS Appl. Mater. Interfaces 2019, 11, 5570–5577.

    Article  CAS  Google Scholar 

  6. Qin, J. S.; Yuan, S.; Alsalme, A.; Zhou, H. C. Flexible zirconium MOF as the crystalline sponge for coordinative alignment of dicarboxylates. ACS Appl. Mater. Interfaces 2017, 9, 33408–33412.

    Article  CAS  Google Scholar 

  7. Burtch, N. C.; Jasuja, H.; Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575–10612.

    Article  CAS  Google Scholar 

  8. Yao, J. F.; Wang, H. T. Zeolitic imidazolate framework composite membranes and thin films: Synthesis and applications. Chem. Soc. Rev. 2014, 43, 4470–4493.

    Article  CAS  Google Scholar 

  9. Huang, X. C.; Zhang, J. P.; Chen, X. M. [Zn(bim)2]·(H2O)1.67: A metal-organic open-framework with sodalite topology. Chin. Sci. Bull. 2003, 48, 1531–1534.

    CAS  Google Scholar 

  10. Park, K. S.; Ni, Z.; Côté, P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 2006, 103, 10186–10191.

    Article  CAS  Google Scholar 

  11. Shi, Z. L.; Tao, Y.; Wu, J. S.; Zhang, C. Z.; He, H. L.; Long, L. L.; Lee, Y.; Li, T.; Zhang, Y. B. Robust metal-triazolate frameworks for CO2 capture from flue gas. J. Am. Chem. Soc. 2020, 142, 2750–2754.

    Article  CAS  Google Scholar 

  12. Desai, A. V.; Manna, B.; Karmakar, A.; Sahu, A.; Ghosh, S. K. A water-stable cationic metal-organic framework as a dual adsorbent of oxoanion pollutants. Angew. Chem. 2016, 128, 7942–7946.

    Article  Google Scholar 

  13. Karmakar, A.; Desai, A. V.; Ghosh, S. K. Ionic metal-organic frameworks (iMOFs): Design principles and applications. Coord. Chem. Rev. 2016, 307, 313–341.

    Article  CAS  Google Scholar 

  14. Wang, L. H.; Ye, Y. X.; Li, Z. Y.; Lin, Q. J.; Ouyang, J.; Liu, L. Z.; Zhang, Z. J.; Xiang, S. C. Highly selective adsorption of C2/C1 mixtures and solvent-dependent thermochromic properties in metalorganic frameworks containing infinite copper-halogen chains. Cryst. Growth Des. 2017, 17, 2081–2089.

    Article  CAS  Google Scholar 

  15. Li, X. X.; Gong, Y. Q.; Zhao, H. X.; Wang, R. H. Anion-directed assemblies of cationic metal-organic frameworks based on 4,4′-bis(1,2,4-triazole): Syntheses, structures, luminescent and anion exchange properties. Inorg. Chem. 2014, 53, 12127–12134.

    Article  CAS  Google Scholar 

  16. Huang, G.; Yang, L.; Yin, Q.; Fang, Z. B.; Hu, X. J.; Zhang, A. A.; Jiang, J.; Liu, T. F.; Cao, R. A comparison of two isoreticular metalorganic frameworks with cationic and neutral skeletons: Stability, mechanism, and catalytic activity. Angew. Chem., Int. Ed. 2020, 59, 4385–4390.

    Article  CAS  Google Scholar 

  17. Sharma, S.; Desai, A. V.; Joarder, B.; Ghosh, S. K. A water-stable ionic MOF for the selective capture of toxic oxoanions of SeVI and AsV and crystallographic insight into the ion-exchange mechanism. Angew. Chem., Int. Ed. 2020, 59, 7788–7792.

    Article  CAS  Google Scholar 

  18. Li, C. P.; Ai, J. Y.; Zhou, H.; Chen, Q.; Yang, Y. J.; He, H. M.; Du, M. Ultra-highly selective trapping of perrhenate/pertechnetate by a flexible cationic coordination framework. Chem. Commun. 2019, 55, 1841–1844.

    Article  CAS  Google Scholar 

  19. Sumida, K.; Horike, N.; Furukawa, S. Dynamic properties of a flexible metal-organic framework exhibiting a unique “picture frame”-like crystal morphology. Nano Res. 2021, 14, 432–437.

    Article  CAS  Google Scholar 

  20. Schneemann, A.; Bon, V.; Schwedler, I.; Senkovska, I.; Kaskel, S.; Fischer, R. A. Flexible metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 6062–6096.

    Article  CAS  Google Scholar 

  21. Zhang, Y. Y.; Zhang, X.; Chen, Z. J.; Otake, K. I.; Peterson, G. W.; Chen, Y. W.; Wang, X. J.; Redfern, L. R.; Goswami, S.; Li, P. et al. A flexible interpenetrated zirconium-based metal-organic framework with high affinity toward ammonia. ChemSusChem 2020, 13, 1710–1714.

    Article  CAS  Google Scholar 

  22. Ehrling, S.; Senkovska, I.; Bon, V.; Evans, J. D.; Petkov, P.; Krupskaya, Y.; Kataev, V.; Wulf, T.; Krylov, A.; Vtyurin, A. et al. Crystal size versus paddle wheel deformability: Selective gated adsorption transitions of the switchable metal-organic frameworks DUT-8(Co) and DUT-8(Ni). J. Mater. Chem. A 2019, 7, 21459–21475.

    Article  CAS  Google Scholar 

  23. McGuirk, C. M.; Runčevski, T.; Oktawiec, J.; Turkiewicz, A.; Taylor, M. K.; Long, J. R. Influence of metal substitution on the pressure-induced phase change in flexible zeolitic imidazolate frameworks. J. Am. Chem. Soc. 2018, 140, 15924–15933.

    Article  CAS  Google Scholar 

  24. Chanut, N.; Ghoufi, A.; Coulet, M. V.; Bourrelly, S.; Kuchta, B.; Maurin, G.; Llewellyn, P. L. Tailoring the separation properties of flexible metal-organic frameworks using mechanical pressure. Nat. Commun. 2020, 11, 1216.

    Article  CAS  Google Scholar 

  25. Bloch, W. M.; Babarao, R.; Hill, M. R.; Doonan, C. J.; Sumby, C. J. Post-synthetic structural processing in a metal-organic framework material as a mechanism for exceptional CO2/N2 selectivity. J. Am. Chem. Soc. 2013, 135, 10441–10448.

    Article  CAS  Google Scholar 

  26. Zhang, P. D.; Wu, X. Q.; He, T.; Xie, L. H.; Chen, Q.; Li, J. R. Selective adsorption and separation of C2 hydrocarbons in a “flexible-robust” metal-organic framework based on a guest-dependent gate-opening effect. Chem. Commun. 2020, 56, 5520–5523.

    Article  CAS  Google Scholar 

  27. Zhang, Y. Y.; Zhang, X.; Lyu, J.; Otake, K. I.; Wang, X. J.; Redfern, L. R.; Malliakas, C. D.; Li, Z. Y.; Islamoglu, T.; Wang, B. et al. A flexible metal-organic framework with 4-Connected Zr6 nodes. J. Am. Chem. Soc. 2018, 140, 11179–11183.

    Article  CAS  Google Scholar 

  28. Shi, Y. X.; Li, W. X.; Zhang, W. H.; Lang, J. P. Guest-induced switchable breathing behavior in a flexible metal-organic framework with pronounced negative gas pressure. Inorg. Chem. 2018, 57, 8627–8633.

    Article  CAS  Google Scholar 

  29. Carrington, E. J.; McAnally, C. A.; Fletcher, A. J.; Thompson, S. P.; Warren, M.; Brammer, L. Solvent-switchable continuous-breathing behaviour in a diamondoid metal-organic framework and its influence on CO2 versus CH4 selectivity. Nat. Chem. 2017, 9, 882–889.

    Article  CAS  Google Scholar 

  30. Huang, Y. K.; Zhang, J.; Yue, D.; Cui, Y. J.; Yang, Y.; Li, B.; Qian, G. D. Solvent-triggered reversible phase changes in two manganese-based metal-organic frameworks and associated sensing events. Chem.—Eur. J. 2018, 24, 13231–13237.

    Article  CAS  Google Scholar 

  31. Choi, H. J.; Dincă, M.; Long, J. R. Broadly hysteretic H2 adsorption in the microporous metal-organic framework Co(1,4-benzenedipyrazolate). J. Am. Chem. Soc. 2008, 130, 7848–7850.

    Article  CAS  Google Scholar 

  32. Yan, Y.; O’Connor, A. E.; Kanthasamy, G.; Atkinson, G.; Allan, D. R.; Blake, A. J.; Schröder, M. Unusual and tunable negative linear compressibility in the metal-organic framework MFM-133(M) (M = Zr, Hf). J. Am. Chem. Soc. 2018, 140, 3952–3958.

    Article  CAS  Google Scholar 

  33. Taylor, M. K.; Runčevski, T.; Oktawiec, J.; Bachman, J. E.; Siegelman, R. L.; Jiang, H.; Mason, J. A.; Tarver, J. D.; Long, J. R. Near-perfect CO2/CH4 selectivity achieved through reversible guest templating in the flexible metal-organic framework Co(bdp). J. Am. Chem. Soc. 2018, 140, 10324–10331.

    Article  CAS  Google Scholar 

  34. Gao, Q.; Xu, J.; Cao, D. P.; Chang, Z.; Bu, X. H. A rigid nested metal-organic framework featuring a thermoresponsive gating effect dominated by counterions. Angew. Chem., Int. Ed. 2016, 55, 15027–15030.

    Article  CAS  Google Scholar 

  35. Millange, F.; Guillou, N.; Walton, R. I.; Grenèche, J. M.; Margiolaki, I.; Férey, G. Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. Chem. Commun. 2008, 4732–4734.

  36. Zhang, C.; Liu, B. S.; Wang, G. M.; Yu, G. L.; Zou, X. Q.; Zhu, G. S. Small-pore CAU-21 and porous PIM-1 in mixed-matrix membranes for improving selectivity and permeability in hydrogen separation. Chem. Commun. 2019, 55, 7101–7104.

    Article  CAS  Google Scholar 

  37. Garai, B.; Bon, V.; Krause, S.; Schwotzer, F.; Gerlach, M.; Senkovska, I.; Kaskel, S. Tunable flexibility and porosity of the metal-organic framework DUT-49 through postsynthetic metal exchange. Chem. Mater. 2020, 32, 889–896.

    Article  CAS  Google Scholar 

  38. Kundu, T.; Wahiduzzaman, M.; Shah, B. B.; Maurin, G.; Zhao, D. Solvent-induced control over breathing behavior in flexible metalorganic frameworks for natural-gas delivery. Angew. Chem., Int. Ed. 2019, 55, 8073–8077.

    Article  CAS  Google Scholar 

  39. Sun, X. D.; Yao, S.; Li, G. H.; Zhang, L. R.; Huo, Q. S.; Liu, Y. L. A flexible doubly interpenetrated metal-organic framework with breathing behavior and tunable gate opening effect by introducing Co2+ into Zn4O Clusters. Inorg. Chem. 2017, 56, 6645–6651.

    Article  CAS  Google Scholar 

  40. He, H. M.; Sun, F. X.; Aguila, B.; Perman, J. A.; Ma, S. Q.; Zhu, G. S. A bifunctional metal-organic framework featuring the combination of open metal sites and lewis basic sites for selective gas adsorption and heterogeneous cascade catalysis. J. Mater. Chem. A 2016, 4, 15240–15246.

    Article  CAS  Google Scholar 

  41. Liang, Z. J.; Marshall, M.; Chaffee, A. L. Comparison of Cu-BTC and zeolite 13X for adsorbent based CO2 separation. Energy Procedia 2009, 1, 1265–1271.

    Article  CAS  Google Scholar 

  42. Yang, L. F.; Cui, X. L.; Zhang, Y. B.; Wang, Q. J.; Zhang, Z. Q.; Suo, X.; Xing, H. B. Anion pillared metal-organic framework embedded with molecular rotors for size-selective capture of CO2 from CH4 and N2. ACS Sustainable Chem. Eng. 2019, 7, 3138–3144.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors from NENU thank the financial supports from the Fundamental Research Funds for the Central Universities (No. 2412019FZ008), the National Natural Science Foundation of China (Nos. 21871105, 21503038 and 21531003) and the “111” project (No. B18012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofei Jing or Fuxing Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zeng, S., Tian, Y. et al. Two flexible cationic metal-organic frameworks with remarkable stability for CO2/CH4 separation. Nano Res. 14, 3288–3293 (2021). https://doi.org/10.1007/s12274-021-3329-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3329-8

Keywords

Navigation