Skip to main content
Log in

Van der Waals heterostructure engineering by 2D space-confinement for advanced potassium-ion storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2) has received enormous attentions in the electrochemical energy storage due to its unique two-dimensional layered structure and relatively high reversible capacity. However, the application of MoS2 in potassium-ion batteries (PIBs) is restricted by poor rate capability and cyclability, which are associated with the sluggish reaction kinetics and the huge volume expansion during K+ intercalation. Herein, we propose a two-dimensional (2D) space confined strategy to construct van der Waals heterostructure for superior PIB anode, in which the MoS2 nanosheets can be well dispersed on reduced graphene oxide nanosheets by leveraging the confinement effect within the graphene layers and amorphous carbon. The strong synergistic effects in 2D van der Waals heterostructure can extremely promote the electron transportation and ions diffusion during K+ insertion/extraction. More significantly, the 2D space-confinement effect and van der Waals force inhibit polysulfide conversion product dissolution into the electrolyte, which significantly strengthens the structural durability during the long-term cycling process. As anticipated, the as-synthesized the “face-to-face” C/MoS2/G anode delivers remarkable K-storage performance, especially for high reversible capacity (362.5 mAh·g−1 at 0.1 A·g−1), excellent rate capability (195.4 mAh·g−1 at 10 Ag−1) and superior ultrahigh-rate long-cycling stability (126.4 mAh·g−1 after 4000 cycles at high rate of 5 A·g−1). This work presents a promise strategy of structure designing and composition optimization for 2D layered materials in advanced energy storage application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  Google Scholar 

  2. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

    Article  CAS  Google Scholar 

  3. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    CAS  Google Scholar 

  4. Ren, X. D.; Zhao, Q.; McCulloch, W. D.; Wu, Y. Y. MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 2017, 10, 1313–1321.

    Article  CAS  Google Scholar 

  5. Rajagopalan, R.; Tang, Y. G.; Ji, X. B.; Jia, C. K.; Wang, H. Y. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.

    Article  CAS  Google Scholar 

  6. Huang, H. J.; Xu, R.; Feng, Y. Z.; Zeng, S. F.; Jiang, Y.; Wang, H. J.; Luo, W.; Yu, Y. Sodium/potassium-ion batteries: Boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 2020, 32, 1904320.

    Article  CAS  Google Scholar 

  7. An, Y. L.; Fei, H. F.; Zeng, G. F.; Ci, L. J.; Xi, B. J.; Xiong, S. L.; Feng, J. K. Commercial expanded graphite as a low-cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte. J. Power Sources 2018, 378, 66–72.

    Article  CAS  Google Scholar 

  8. Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.

    Article  CAS  Google Scholar 

  9. Wang, W.; Jiang, B.; Qian, C.; Lv, F.; Feng, J. R.; Zhou, J. H.; Wang, K.; Yang, C.; Yang, Y.; Guo, S. J. Pistachio-Shuck-Like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 2018, 30, 1801812.

    Article  CAS  Google Scholar 

  10. Li, L.; Zhang, W. C.; Wang, X.; Zhang, S. L.; Liu, Y. J.; Li, M. H.; Zhu, G. J.; Zheng, Y.; Zhang, Q.; Zhou, T. F. et al. Hollow-carbon-templated few-layered V5S8 nanosheets enabling ultrafast potassium storage and long-term cycling. ACS Nano 2019, 13, 7939–7948.

    Article  CAS  Google Scholar 

  11. Liu, D. Y.; Yang, L.; Chen, Z. Y.; Zou, G. Q.; Hou, H. H.; Hu, J. G.; Ji, X. B. Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries. Sci. Bull. 2020, 65, 1003–1012.

    Article  CAS  Google Scholar 

  12. Shen, C.; Cheng, T. L.; Liu, C. Y.; Huang, L.; Cao, M. Y.; Song, G. Q.; Wang, D.; Lu, B. A.; Wang, J. W.; Qin, C. W. et al. Bismuthene from sonoelectrochemistry as a superior anode for potassium-ion batteries. J. Mater. Chem. A 2020, 8, 453–460.

    Article  CAS  Google Scholar 

  13. Chen, B.; Chao, D. L.; Liu, E. Z.; Jaroniec, M.; Zhao, N. Q.; Qiao, S. Z. Transition metal dichalcogenides for alkali metal ion batteries: Engineering strategies at the atomic level. Energy Environ. Sci. 2020, 13, 1096–1131.

    Article  CAS  Google Scholar 

  14. Yang, C. H.; Ou, X.; Xiong, X. H.; Zheng, F. H.; Hu, R. Z.; Chen, Y.; Liu, M. L.; Huang, K. V5S8-graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 107–113.

    Article  CAS  Google Scholar 

  15. Ou, X.; Cao, L.; Liang, X. H.; Zheng, F. H.; Zheng, H. S.; Yang, X. F.; Wang, J. H.; Yang, C. H.; Liu, M. L. Fabrication of SnS2/Mn2SnS4/carbon heterostructures for sodium-ion batteries with high initial coulombic efficiency and cycling stability. ACS Nano 2019, 13, 3666–3676.

    Article  CAS  Google Scholar 

  16. Zhang, J. Y.; Cui, P. X.; Gu, Y.; Wu, D. J.; Tao, S.; Qian, B.; Chu, W. S.; Song, L. Encapsulating carbon-coated MoS2 nanosheets within a nitrogen-doped graphene network for high-performance potassium-ion storage. Adv. Mater. Interfaces 2019, 6, 1901066.

    Article  CAS  Google Scholar 

  17. Di, S. J.; Ding, P.; Wang, Y. Y.; Wu, Y. L.; Deng, J.; Jia, L.; Li, Y. G. Interlayer-expanded MoS2 assemblies for enhanced electrochemical storage of potassium ions. Nano Res. 2020, 13, 225–230.

    Article  CAS  Google Scholar 

  18. Xie, X. Q.; Ao, Z. M.; Su, D. W.; Zhang, J. Q.; Wang, G. X. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: The role of the two-dimensional heterointerface. Adv. Funct. Mater. 2015, 25, 1393–1403.

    Article  CAS  Google Scholar 

  19. Cao, L.; Zhang, B.; Xia, H. F.; Wang, C. H.; Luo, B.; Fan, X. M.; Zhang, J. F.; Ou, X. Hierarchical chrysanthemum-like MoS2/Sb heterostructure encapsulated into N-doped graphene framework for superior potassium-ion storage. Chem. Eng. J. 2020, 387, 124060.

    Article  CAS  Google Scholar 

  20. Yu, Z. J.; Xie, Y.; Xie, B. X.; Cao, C. T.; Zhang, Z. G.; Huo, H.; Jiang, Z. X.; Pan, Q. M.; Yin, G. P.; Wang, J. J. Uncovering the underlying science behind dimensionality in the potassium battery regime. Energy Storage Mater. 2020, 25, 416–425.

    Article  Google Scholar 

  21. Hu, X.; Li, Y.; Zeng, G.; Jia, J. C.; Zhan, H. B.; Wen, Z. H. Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2 for lithium and sodium storage. ACS Nano 2018, 12, 1592–1602.

    Article  CAS  Google Scholar 

  22. Guo, J. Z.; Sun, X. H.; Shen, K. E.; Li, X.; Zhang, N.; Hou, T. Y.; Fan, A. R.; Jin, S. B.; Hu, X. D.; Li, T. T. et al. Controllable synthesis of tunable few-layered MoS2 chemically bonding with in situ conversion nitrogen-doped carbon for ultrafast reversible sodium and potassium storage. Chem. Eng. J. 2020, 393, 124703.

    Article  CAS  Google Scholar 

  23. Cui, Y. P.; Liu, W.; Feng, W. T.; Zhang, Y.; Du, Y. X.; Liu, S.; Wang, H. L.; Chen, M.; Zhou, J. A. Controlled design of well-dispersed ultrathin MoS2 nanosheets inside hollow carbon skeleton: Toward fast potassium storage by constructing spacious “Houses” for K ions. Adv. Funct. Mater. 2020, 30, 1908755.

    Article  CAS  Google Scholar 

  24. Xie, K. Y.; Yuan, K.; Li, X.; Lu, W.; Shen, C.; Liang, C. L.; Vajtai, R.; Ajayan, P.; Wei, B. Q. Superior potassium ion storage via vertical MoS2 “nano-rose” with expanded interlayers on graphene. Small 2017, 13, 1701471.

    Article  CAS  Google Scholar 

  25. Wang, P. Y.; Tian, J.; Hu, J. L.; Zhou, X. J.; Li, C. L. Supernormal conversion anode consisting of high-density MoS2 bubbles wrapped in thin carbon network by self-sulfuration of polyoxometalate complex. ACS Nano 2017, 11, 7390–7400.

    Article  CAS  Google Scholar 

  26. Chong, S. K.; Sun, L.; Shu, C. Y.; Guo, S. W.; Liu, Y. N.; Wang, W.; Liu, H. K. Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage. Nano Energy 2019, 63, 103868.

    Article  CAS  Google Scholar 

  27. Yang, T. Y.; Liang, J.; Sultana, I.; Rahman, M. M.; Monteiro, M. J.; Chen, Y.; Shao, Z. P.; Silva, S. R. P.; Liu, J. Formation of hollow MoS2/carbon microspheres for high capacity and high rate reversible alkali-ion storage. J. Mater. Chem. A 2018, 6, 8280–8288.

    Article  CAS  Google Scholar 

  28. Li, J. S.; Wang, Y.; Liu, C. H.; Li, S. L.; Wang, Y. G.; Dong, L. Z.; Dai, Z. H.; Li, Y. F.; Lan, Y. Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2016, 7, 11204.

    Article  CAS  Google Scholar 

  29. Chakraborty, B.; Matte, H. S. S. R.; Sood, A. K.; Rao, C. N. R. Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc. 2013, 44 (1), 92–96.

    Article  CAS  Google Scholar 

  30. Jiang, H.; Ren, D. Y.; Wang, H. F.; Hu, Y. J.; Guo, S. J.; Yuan, H. Y.; Hu, P. J.; Zhang, L.; Li, C. Z. 2D monolayer MoS2-carbon interoverlapped superstructure: Engineering ideal atomic interface for lithium ion storage. Adv Mater 2015, 27, 3687–95.

    Article  CAS  Google Scholar 

  31. McCreary, K. M.; Hanbicki, A. T.; Robinson, J. T.; Cobas, E.; Culbertson, J. C.; Friedman, A. L.; Jernigan, G. G.; Jonker, B. T. Large-area synthesis of continuous and uniform MoS2 monolayer films on graphene. Adv. Funct. Mater. 2014, 24, 6449–6454.

    Article  CAS  Google Scholar 

  32. Wang, X. L.; Li, G.; Seo, M. H.; Hassan, F. M.; Hoque, M. A.; Chen, Z. W. Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1501106.

    Article  CAS  Google Scholar 

  33. Xiong, X. H.; Wang, G. H.; Lin, Y. W.; Wang, Y.; Ou, X.; Zheng, F. H.; Yang, C. H.; Wang, J. H.; Liu, M. L. Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 2016, 10, 10953–10959.

    Article  CAS  Google Scholar 

  34. Cao, L.; Gao, X. W.; Zhang, B.; Ou, X.; Zhang, J. F.; Luo, W. B. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 2020, 14, 3610–3620.

    Article  CAS  Google Scholar 

  35. Tang, C.; Zhong, L.; Zhang, B. S.; Wang, H. F.; Zhang, Q. 3D mesoporous van der Waals heterostructures for trifunctional energy electrocatalysis. Adv. Mater. 2018, 30, 1705110.

    Article  CAS  Google Scholar 

  36. Li, H. L.; Yu, K.; Li, C.; Tang, Z.; Guo, B. J.; Lei, X.; Fu, H.; Zhu, Z. Q. Charge-transfer induced high efficient hydrogen evolution of MoS2/graphene cocatalyst. Sci. Rep. 2015, 5, 18730.

    Article  CAS  Google Scholar 

  37. Du, X. Q.; Huang, J. Q.; Guo, X. Y.; Lin, X. Y.; Huang, J. Q.; Tan, H.; Zhu, Y.; Zhang, B. Preserved layered structure enables stable cyclic performance of MoS2 upon potassium insertion. Chem. Mater. 2019, 31, 8801–8809.

    Article  CAS  Google Scholar 

  38. Zheng, N.; Jiang, G. Y.; Chen, X.; Mao, J. Y.; Zhou, Y. J.; Li, Y. S. Rational design of a tubular, interlayer expanded MoS2-N/O doped carbon composite for excellent potassium-ion storage. J. Mater. Chem. A 2019, 7, 9305–9315.

    Article  CAS  Google Scholar 

  39. Jia, B. R.; Yu, Q. Y.; Zhao, Y. Z.; Qin, M. L.; Wang, W.; Liu, Z. W.; Lao, C. Y.; Liu, Y.; Wu, H. W.; Zhang, Z. L. et al. Bamboo-like hollow tubes with MoS2/N-doped-C interfaces boost potassium-ion storage. Adv. Funct. Mater. 2018, 28, 1803409.

    Article  CAS  Google Scholar 

  40. Wang, J.; Wang, B.; Lu, B. A. Nature of novel 2D van der Waals heterostructures for superior potassium ion batteries. Adv. Energy Mater. 2020, 10, 2000884.

    Article  CAS  Google Scholar 

  41. Fan, H. N.; Wang, X. Y.; Yu, H. B.; Gu, Q. F.; Chen, S. L.; Liu, Z.; Chen, X. H.; Luo, W. B.; Liu, H. K. Enhanced potassium ion battery by inducing interlayer anionic ligands in MoS1.5Se0.5 nanosheets with exploration of the mechanism. Adv. Energy Mater. 2020, 10, 1904162.

    Article  CAS  Google Scholar 

  42. Ge, J. M.; Fan, L.; Wang, J.; Zhang, Q. F.; Liu, Z. M.; Zhang, E. J.; Liu, Q.; Yu, X. Z.; Lu, B. A. MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801477.

    Article  CAS  Google Scholar 

  43. Zhang, C. Z.; Han, F.; Wang, F.; Liu, Q. D.; Zhou, D. W.; Zhang, F. Q.; Xu, S. H.; Fan, C. L.; Li, X. K.; Liu, J. S. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Mater. 2020, 24, 208–219.

    Article  Google Scholar 

  44. Huang, H. W.; Cui, J.; Liu, G. X.; Bi, R.; Zhang, L. Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 2019, 13, 3448–3456.

    Article  CAS  Google Scholar 

  45. Li, D. P.; Zhang, Y. M.; Sun, Q.; Zhang, S. N.; Wang, Z. P.; Liang, Z.; Si, P. C.; Ci, L. J. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Storage Mater. 2019, 23, 367–374.

    Article  Google Scholar 

  46. Tian, H. J.; Yu, X. C.; Shao, H. Z.; Dong, L. B.; Chen, Y.; Fang, X. Q.; Wang, C. Y.; Han, W. Q.; Wang, G. X. Unlocking few-layered ternary chalcogenides for high-performance potassium-ion storage. Adv. Energy Mater. 2019, 9, 1901560.

    Article  CAS  Google Scholar 

  47. Yang, F. H.; Gao, H.; Hao, J. N.; Zhang, S. L.; Li, P.; Liu, Y. Q.; Chen, J.; Guo, Z. P. Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808291.

    Article  CAS  Google Scholar 

  48. Chen, C. M.; Yang, Y. C.; Tang, X.; Qiu, R. H.; Wang, S. Y.; Cao, G. Z.; Zhang, M. Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range. Small 2019, 15, 1804740.

    Article  CAS  Google Scholar 

  49. Chen, Z.; Yin, D. G.; Zhang, M. Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small 2018, 14, 1703818.

    Article  CAS  Google Scholar 

  50. Qian, Y.; Jiang, S.; Li, Y.; Yi, Z.; Zhou, J.; Tian, J.; Lin, N.; Qian, Y. T. Water-induced growth of a highly oriented mesoporous graphitic carbon nanospring for fast potassium-ion adsorption/intercalation storage. Angew. Chem., Int. Ed. 2019, 58, 18108–18115.

    Article  CAS  Google Scholar 

  51. Wang, B.; Cheng, Y. F.; Su, H.; Cheng, M.; Li, Y.; Geng, H. B.; Dai, Z. F. Boosting transport kinetics of cobalt sulfides yolk-shell spheres by anion doping for advanced lithium and sodium storage. ChemSusChem 2020, 13, 4078–4085.

    Article  CAS  Google Scholar 

  52. Yang, C.; Lv, F.; Zhang, Y. L.; Wen, J.; Dong, K.; Su, H.; Lai, F. L.; Qian, G. Y.; Wang, W.; Hilger, A. et al. Confined Fe2VO4cnitrogen-doped carbon nanowires with internal void space for high-rate and ultrastable potassium-ion storage. Adv. Energy Mater. 2019, 9, 1902674.

    Article  CAS  Google Scholar 

  53. Wang, Y. Y.; Hou, B. H.; Yang, X.; Chen, D.; Liang, H. J.; Gu, Z. Y.; Rui, X. H.; Wu, X. L. Full pseudocapacitive behavior hypoxic graphene for ultrafast and ultrastable sodium storage. J. Mater. Chem. A 2020, 8, 9911–9918.

    Article  CAS  Google Scholar 

  54. Chen, J. W.; Luo, B.; Chen, Q. S.; Li, F.; Guo, Y. J.; Wu, T.; Peng, P.; Qin, X.; Wu, G. X.; Cui, M. Q. et al. Localized electrons enhanced ion transport for ultrafast electrochemical energy storage. Adv. Mater. 2020, 32, 1905578.

    Article  CAS  Google Scholar 

  55. Fang, G. Z.; Wang, Q. C.; Zhou, J.; Lei, Y. P.; Chen, Z. X.; Wang, Z. Q.; Pan, A. Q.; Liang, S. Q. Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 2019, 13, 5635–5645.

    Article  CAS  Google Scholar 

  56. Li, Y. P.; Yang, C. H.; Zheng, F. H.; Pan, Q. C.; Liu, Y. Z.; Wang, G.; Liu, T. Z.; Hu, J. H.; Liu, M. L. Design of TiO2eC hierarchical tubular heterostructures for high performance potassium ion batteries. Nano Energy 2019, 59, 582–590.

    Article  CAS  Google Scholar 

  57. Luo, B.; Jiang, B.; Peng, P.; Huang, J. J.; Chen, J. W.; Li, M. C.; Chu, L. H.; Li, Y. F. Improving the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathode material via tungsten modification. Electrochim. Acta 2019, 297, 398–405.

    Article  CAS  Google Scholar 

  58. Tan, L.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Wang, J. X. Lightweight reduced graphene oxide@MoS2 interlayer as polysulfide barrier for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 3707–3713.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51902347, 51822812, 51772334, and 51778627) and Natural Science Foundation of Hunan Province (No. 2020JJ5741).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiafeng Zhang or Xing Ou.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, B., Wu, P., Zhang, J. et al. Van der Waals heterostructure engineering by 2D space-confinement for advanced potassium-ion storage. Nano Res. 14, 3854–3863 (2021). https://doi.org/10.1007/s12274-021-3305-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3305-3

Keywords

Navigation