Skip to main content
Log in

Reliable sensors based on graphene textile with negative resistance variation in three dimensions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The weft-knitted reduced graphene oxide (r-GO) textile that is made up of many conductive r-GO coated fibers was successfully prepared dependent on the electrospray deposition technique. Interestingly, the r-GO textile presents negative resistance variation not only in axial direction as the pressure increases but also in transverse direction as the lateral stretch increases which makes it has the advantage to fabricate the reliable sensors based on strain-resistance effect. The transverse-strain and pressure sensors based on the r-GO textiles all show the excellent sensing characteristics such as high sensitivity, reliability, and good durability, etc. The maximum gauge factors (GF) of the transverse-sensor are 27.1 and 153.5 in the x- and y-direction, respectively. And the practical detection range can up to 40% in the x-direction and 35% in the y-direction, respectively. The r-GO textile pressure sensor also shows high sensitivity for a broad pressure range that with a GF up to 716.8 kPa−1 for less than 4.5 kPa region and still has more sensitive pressure sensing characteristics even the pressure goes up to 14 kPa. Based on those good performances of r-GO textile sensors, its potential applications in human body states monitoring have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amjadi, M.; Kyung, K. U.; Park, I.; Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Adv. Funct. Mater. 2016, 26, 1678–1698.

    Article  CAS  Google Scholar 

  2. Nag, A.; Mitra, A.; Mukhopadhyay, S. C. Graphene and its sensor-based applications: A review. Sens. Actuators A-Phys. 2018, 270, 177–194.

    Article  CAS  Google Scholar 

  3. Liu, H.; Li, Q. M.; Zhang, S. D.; Yin, R.; Liu, X. H.; He, Y. X.; Dai, K.; Shan, C. X.; Guo, J.; Liu, C. T. et al. Electrically conductive polymer composites for smart flexible strain sensors: A critical review. J. Mater. Chem. C 2018, 6, 12121–12141.

    Article  CAS  Google Scholar 

  4. Wang, D. R.; Zhang, Y. K.; Lu, X.; Ma, Z. J.; Xie, C.; Zheng, Z. J. Chemical formation of soft metal electrodes for flexible and wearable electronics. Chem. Soc. Rev. 2018, 47, 4611–4641.

    Article  CAS  Google Scholar 

  5. Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

    Article  CAS  Google Scholar 

  6. Schwartz, G.; Tee, B. C. K.; Mei, J. G.; Appleton, A. L.; Kim, D. H.; Wang, H. L.; Bao, Z. N. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4, 1859.

    Article  CAS  Google Scholar 

  7. Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

    Article  CAS  Google Scholar 

  8. Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795–801.

    Article  CAS  Google Scholar 

  9. Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowireelastomer nanocomposite. ACS Nano 2014, 8, 5154–5163.

    Article  CAS  Google Scholar 

  10. Guo, Y. N.; Gao, Z. Y.; Wang, X. X.; Sun, L.; Yan, X.; Yan, S. Y.; Long, Y. Z.; Han, W. P. A highly stretchable humidity sensor based on spandex covered yarns and nanostructured polyaniline. RSC Adv. 2018, 8, 1078–1082.

    Article  CAS  Google Scholar 

  11. Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.

    Article  CAS  Google Scholar 

  12. Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.

    Article  CAS  Google Scholar 

  13. Lee, J.; Kim, S.; Lee, J.; Yang, D.; Park, B. C.; Ryu, S.; Park, I. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 2014, 6, 11932–11939.

    Article  CAS  Google Scholar 

  14. Yu, G. F.; Yan, X.; Yu, M.; Jia, M. Y.; Pan, W.; He, X. X.; Han, W. P.; Zhang, Z. M.; Yu, L. M.; Long, Y. Z. Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization. Nanoscale 2016, 8, 2944–2950.

    Article  CAS  Google Scholar 

  15. Ge, J.; Sun, L.; Zhang, F. R.; Zhang, Y.; Shi, L. A.; Zhao, H. Y.; Zhu, H. W.; Jiang, H. L.; Yu, S. H. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties. Adv. Mater. 2016, 28, 722–728.

    Article  CAS  Google Scholar 

  16. Wang, Y.; Wang, L.; Yang, T. T.; Li, X.; Zang, X. B.; Zhu, M.; Wang, K. L.; Wu, D. H.; Zhu, H. W. Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 2014, 24, 4666–4670.

    Article  CAS  Google Scholar 

  17. Tao, L. Q.; Zhang, K. N.; Tian, H.; Liu, Y.; Wang, D. Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. Graphene-paper pressure sensor for detecting human motions. ACS Nano 2017, 11, 8790–8795.

    Article  CAS  Google Scholar 

  18. Yang, T. T.; Jiang, X.; Zhong, Y. J.; Zhao, X. L.; Lin, S. Y.; Li, J.; Li, X. M.; Xu, J. L.; Li, Z. H.; Zhu, H. W. A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sens. 2017, 2, 967–974.

    Article  CAS  Google Scholar 

  19. Tewari, A.; Gandla, S.; Bohm, S.; McNeill, C. R.; Gupta, D. Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications. Appl. Phys. Lett. 2018, 113, 084101.

    Article  CAS  Google Scholar 

  20. Yan, C. Y.; Wang, J. X.; Kang, W. B.; Cui, M. Q.; Wang, X.; Foo, C. Y.; Chee, K. J.; Lee, P. S. Highly stretchable piezoresistive graphenenanocellulose nanopaper for strain sensors. Adv. Mater. 2014, 26, 2022–2027.

    Article  CAS  Google Scholar 

  21. Zhang, M. C.; Wang, C. Y.; Wang, Q.; Jian, M. Q.; Zhang, Y. Y. Sheath–core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl. Mater. Interfaces 2016, 8, 20894–20899.

    Article  CAS  Google Scholar 

  22. Wang, X. N.; Qiu, Y. F.; Cao, W. W.; Hu, P. A. Highly stretchable and conductive core-sheath chemical vapor deposition graphene fibers and their applications in safe strain sensors. Chem. Mater. 2015, 27, 6969–6975.

    Article  CAS  Google Scholar 

  23. Cai, G. M.; Yang, M. Y.; Xu, Z. L.; Liu, J. G.; Tang, B.; Wang, X. G. Flexible and wearable strain sensing fabrics. Chem. Eng. J. 2017, 325, 396–403.

    Article  CAS  Google Scholar 

  24. Yang, Z.; Pang, Y.; Han, X. L.; Yang, Y. F.; Ling, J.; Jian, M. Q.; Zhang, Y. Y.; Yang, Y.; Ren, T. L. Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 2018, 12, 9134–9141.

    Article  CAS  Google Scholar 

  25. Huang, T.; He, P.; Wang, R. R.; Yang, S. W.; Sun, J.; Xie, X. M.; Ding, G. Q. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors. Adv. Funct. Mater. 2019, 29, 1903732.

    Article  CAS  Google Scholar 

  26. Liu, H.; Li, Y. L.; Dai, K.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Yan, X. R.; Guo, J.; Guo, Z. H. Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C 2016, 4, 157–166.

    Article  CAS  Google Scholar 

  27. Tian, H.; Shu, Y.; Cui, Y. L.; Mi, W. T.; Yang, Y.; Xie, D.; Ren, T. L. Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 2014, 6, 699–705.

    Article  CAS  Google Scholar 

  28. Yang, Y. F.; Tao, L. Q.; Pang, Y.; Tian, H.; Ju, Z. Y.; Wu, X. M.; Yang, Y.; Ren, T. L. An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale 2018, 10, 11524–11530.

    Article  CAS  Google Scholar 

  29. Yang, J. Y.; Ye, Y. S.; Li, X. P.; Lü, X. Z.; Chen, R. J. Flexible, conductive, and highly pressure-sensitive graphene-polyimide foam for pressure sensor application. Compos. Sci. Technol. 2018, 164, 187–194.

    Article  CAS  Google Scholar 

  30. Zhu, S. E.; Ghatkesar, M. K.; Zhang, C.; Janssen, G. C. A. M. Graphene based piezoresistive pressure sensor. Appl. Phys. Lett. 2013, 102, 161904.

    Article  CAS  Google Scholar 

  31. Lou, Z.; Chen, S.; Wang, L. L.; Jiang, K.; Shen, G. Z. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 2016, 23, 7–14.

    Article  CAS  Google Scholar 

  32. Liu, Y.; Tao, L. Q.; Wang, D. Y.; Zhang, T. Y.; Yang, Y.; Ren, T. L. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure. Appl. Phys. Lett. 2017, 110, 123508.

    Article  CAS  Google Scholar 

  33. Ge, G.; Cai, Y. C.; Dong, Q. C.; Zhang, Y. Z.; Shao, J. J.; Huang, W.; Dong, X. C. A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale 2018, 10, 10033–10040.

    Article  CAS  Google Scholar 

  34. Ai, Y. F.; Hsu, T. H.; Wu, D. C.; Lee, L.; Chen, J. H.; Chen, Y. Z.; Wu, S. C.; Wu, C.; Wang, Z. M.; Chueh, Y. L. An ultrasensitive flexible pressure sensor for multimodal wearable electronic skins based on large-scale polystyrene Ball@reduced graphene-oxide core–shell nanoparticles. J. Mater. Chem. C 2018, 6, 5514–5520.

    Article  CAS  Google Scholar 

  35. Pang, Y.; Tian, H.; Tao, L. Q.; Li, Y. X.; Wang, X. F.; Deng, N. Q.; Yang, Y.; Ren, T. L. Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl. Mater. Interfaces 2016, 8, 26458–26462.

    Article  CAS  Google Scholar 

  36. Pang, Y.; Yang, Z.; Han, X. L.; Jian, J. M.; Li, Y. X.; Wang, X. F.; Qiao, Y. C.; Yang, Y.; Ren, T. L. Multifunctional mechanical sensors for versatile physiological signal detection. ACS Appl. Mater. Interfaces 2018, 10, 44173–44182.

    Article  CAS  Google Scholar 

  37. Yan, J. X.; Leng, Y. C.; Guo, Y. N.; Wang, G. Q.; Gong, H.; Guo, P. Z.; Tan, P. H.; Long, Y. Z.; Liu, X. L.; Han, W. P. Highly conductive graphene paper with vertically aligned reduced graphene oxide sheets fabricated by improved electrospray deposition technique. ACS Appl. Mater. Interfaces 2019, 11, 10810–10817.

    Article  CAS  Google Scholar 

  38. Lee, Y. H.; Kim, Y.; Lee, T. I.; Lee, I.; Shin, J.; Lee, H. S.; Kim, T. S.; Choi, J. W. Anomalous stretchable conductivity using an engineered tricot weave. ACS Nano 2015, 9, 12214–12223.

    Article  CAS  Google Scholar 

  39. Chen, D.; Jiang, K.; Huang, T. T.; Shen, G. Z. Recent advances in fiber supercapacitors: Materials, device configurations, and applications. Adv. Mater. 2020, 32, 1901806.

    Article  CAS  Google Scholar 

  40. Ren, J. S.; Wang, C. X.; Zhang, X.; Carey, T.; Chen, K. L.; Yin, Y. J.; Torrisi, F. Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 2017, 111, 622–630.

    Article  CAS  Google Scholar 

  41. Cheng, Y.; Wang, R. R.; Sun, J.; Gao, L. Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires. ACS Nano 2015, 9, 3887–3895.

    Article  CAS  Google Scholar 

  42. Gong, H.; Li, M. F.; Yan, J. X.; Lin, M. L.; Liu, X. L.; Sun, B.; Tan, P. H.; Long, Y. Z.; Han, W. P. Highly conductive, flexible and functional multi-channel graphene microtube fabricated by electrospray deposition technique. J. Mater. Sci. 2019, 54, 14378–14387.

    Article  CAS  Google Scholar 

  43. Liang, K. L.; Li, M. F.; Hao, Y. K.; Yan, W. G.; Cao, M. H.; Fan, S. Q.; Han, W. P.; Su, J. Reduced graphene oxide with 3D interconnected hollow channel architecture as high-performance anode for Li/Na/K-Ion storage. Chem. Eng. J. 2020, 394, 124956.

    Article  CAS  Google Scholar 

  44. Li, M. F.; Gong, H.; Yan, J. X.; Wu, Y. J.; Leng, Y. C.; Liu, X. L.; Long, Y. Z.; Han, W. P. Fabrication of thermally reduced graphene micro-tube and its electronic transport properties. Phys. E: Low-Dimens. Syst. Nanostruct. 2020, 122, 114169.

    Article  CAS  Google Scholar 

  45. Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the National Natural Science Foundation of China (Nos. 11604173, 61625404, 61888102, and 51973100), the China Postdoctoral Science Foundation (2017M612195), State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University (RZ2000003334), and fund from the National Key Research Development Project (2019YFC0121402).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenpeng Han, Yunze Long or Guozhen Shen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Wu, Y., Gong, H. et al. Reliable sensors based on graphene textile with negative resistance variation in three dimensions. Nano Res. 14, 2810–2818 (2021). https://doi.org/10.1007/s12274-021-3291-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3291-5

Keywords

Navigation