Skip to main content
Log in

Ultrathin nanoporous metal electrodes facilitate high proton conduction for low-Pt PEMFCs

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Design of catalyst layers (CLs) with high proton conductivity in membrane electrode assemblies (MEAs) is an important issue for proton exchange membrane fuel cells (PEMFCs). Herein, an ultrathin catalyst layer was constructed based on Pt-decorated nanoporous gold (NPG-Pt) with sub-Debye-length thickness for proton transfer. In the absence of ionomer incorporation in the CLs, these integrated carbon-free electrodes can deliver maximum mass-specific power density of 198.21 and 25.91 kW·gPt−1 when serving individually as the anode and cathode, at a Pt loading of 5.6 and 22.0 µg·cm−2, respectively, comparable to the best reported nano-catalysts for PEMFCs. In-depth quantitative experimental measurements and finite-element analyses indicate that improved proton conduction plays a critical role in activation, ohmic and mass transfer polarizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y. Q.; Zou, Y. Q.; Tao, L.; Wang, Y. Y.; Huang, G.; Du, S. Q.; Wang, S. Y. Rational design of three-phase interfaces for electrocatalysis. Nano Res. 2019, 12, 2055–2066.

    Article  CAS  Google Scholar 

  2. Hu, Y. Z.; Lu, Y.; Zhao, X. R.; Shen, T.; Zhao, T. H.; Gong, M. X.; Chen, K.; Lai, C. L.; Zhang, J.; Xin, H. L. et al. Highly active N-doped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction. Nano Res. 2020, 13, 2365–2370.

    Article  CAS  Google Scholar 

  3. Fang, D. H.; Wan, L.; Jiang, Q. K.; Zhang, H. J.; Tang, X. J.; Qin, X. P.; Shao, Z. G.; Wei, Z. D. Wavy PtCu alloy nanowire networks with abundant surface defects enhanced oxygen reduction reaction. Nano Res. 2019, 12, 2766–2773.

    Article  CAS  Google Scholar 

  4. Wu, H. W. A review of recent development: Transport and performance modeling of PEM fuel cells. Appl. Energy 2016, 165, 81–106.

    Article  CAS  Google Scholar 

  5. Li, Y. Q.; Huang, H. Y.; Chen, S. R.; Yu, X.; Wang, C.; Ma, T. L. 2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 2019, 12, 2774–2780.

    Article  CAS  Google Scholar 

  6. Zhao, S. Y.; Wang, K.; Zou, X. L.; Gan, L.; Du, H. D.; Xu, C. J.; Kang, F. Y.; Duan, W. H.; Li, J. Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen. Nano Res. 2019, 12, 925–930.

    Article  CAS  Google Scholar 

  7. Mehta, V.; Cooper, J. S. Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 2003, 114, 32–53.

    Article  CAS  Google Scholar 

  8. Tian, N.; Lu, B. A.; Yang, X. D.; Huang, R.; Jiang, Y. X.; Zhou, Z. Y.; Sun, S. G. Rational design and synthesis of low-temperature fuel cell electrocatalysts. Electrochem. Energy Rev. 2018, 1, 54–83.

    Article  CAS  Google Scholar 

  9. Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578–589.

    Article  CAS  Google Scholar 

  10. Shen, S. Y.; Han, A. D.; Yan, X. H.; Chen, J. R.; Cheng, X. J.; Zhang, J. L. Influence of equivalent weight of ionomer on proton conduction behavior in fuel cell catalyst layers. J. Electrochem. Soc. 2019, 166, F724–F728.

    Article  CAS  Google Scholar 

  11. Lee, J.; Yoo, J. M.; Ye, Y.; Mun, Y.; Lee, S.; Kim, O. H.; Rhee, H. W.; Lee, H. I.; Sung, Y. E.; Lee, J. Development of highly stable and mass transfer-enhanced cathode catalysts: Support-free electrospun intermetallic FePt nanotubes for polymer electrolyte membrane fuel cells. Adv. Energy Mater. 2015, 5, 1402093.

    Article  CAS  Google Scholar 

  12. Mauger, S. A.; Neyerlin, K. C.; Alia, S. M.; Ngo, C.; Babu, S. K.; Hurst, K. E.; Pylypenko, S.; Litster, S.; Pivovar, B. S. Fuel cell performance implications of membrane electrode assembly fabrication with platinum-nickel nanowire catalysts. J. Electrochem. Soc. 2018, 165, F238–F245.

    Article  CAS  Google Scholar 

  13. Gao, L.; Li, X. X.; Yao, Z. Y.; Bai, H. J.; Lu, Y. F.; Ma, C.; Lu, S. F.; Peng, Z. M.; Yang, J. L.; Pan, A. L. et al. Unconventional p–d hybridization interaction in PtGa ultrathin nanowires boosts oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2019, 141, 18083–18090.

    Article  CAS  Google Scholar 

  14. Zeng, Y. C.; Shao, Z. G.; Zhang, H. J.; Wang, Z. Q.; Hong, S. J.; Yu, H. M.; Yi, B. L. Nanostructured ultrathin catalyst layer based on open-walled PtCo bimetallic nanotube arrays for proton exchange membrane fuel cells. Nano Energy 2017, 34, 344–355.

    Article  CAS  Google Scholar 

  15. Kim, O. H.; Cho, Y. H.; Kang, S. H.; Park, H. Y.; Kim, M.; Lim, J. W.; Chung, D. Y.; Lee, M. J.; Choe, H.; Sung, Y. E. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure. Nat. Commun. 2013, 4, 2473.

    Article  CAS  Google Scholar 

  16. Tian, Z. Q.; Lim, S. H.; Poh, C. K.; Tang, Z.; Xia, Z. T.; Luo, Z. Q.; Shen, P. K.; Chua, D.; Feng, Y. P.; Shen, Z. X. et al. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells. Adv. Energy Mater. 2011, 1, 1205–1214.

    Article  CAS  Google Scholar 

  17. Debe, M. K.; Schmoeckel, A. K.; Vernstrom, G. D.; Atanasoski, R. High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J. Power Sources 2006, 161, 1002–1011.

    Article  CAS  Google Scholar 

  18. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

    Article  CAS  Google Scholar 

  19. Debe, M. K. Tutorial on the fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts. J. Electrochem. Soc. 2013, 160, F522–F534.

    Article  CAS  Google Scholar 

  20. Rösner, H.; Parida, S.; Kramer, D.; Volkert, C. A.; Weissmüller, J. Reconstructing a nanoporous metal in three dimensions: An electron tomography study of dealloyed gold leaf. Adv. Eng. Mater. 2007, 9, 535–541.

    Article  CAS  Google Scholar 

  21. Ding, Y.; Erlebacher, J. Nanoporous metals with controlled multimodal pore size distribution. J. Am. Chem. Soc. 2003, 125, 7772–7773.

    Article  CAS  Google Scholar 

  22. Ding, Y.; Chen, M. W.; Erlebacher, J. Metallic mesoporous nanocomposites for electrocatalysis. J. Am. Chem. Soc. 2004, 126, 6876–6877.

    Article  CAS  Google Scholar 

  23. Wang, R. Y.; Wang, C.; Cai, W. B.; Ding, Y. Ultralow-platinum-loading high-performance nanoporous electrocatalysts with nanoengineered surface structures. Adv. Mater. 2010, 22, 1845–1848.

    Article  CAS  Google Scholar 

  24. Wang, R. Y.; Liu, J. G.; Liu, P.; Bi, X. X.; Yan, X. L.; Wang, W. X.; Meng, Y. F.; Ge, X. B.; Chen, M. W.; Ding, Y. Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Res. 2014, 7, 1569–1580.

    Article  CAS  Google Scholar 

  25. Santamaría-Holek, I.; Hernández, S. I.; García-Alcantára, C.; Ledesma-Durán, A. Review on the macro-transport processes theory for irregular pores able to perform catalytic reactions. Catalysts 2019, 9, 281.

    Article  CAS  Google Scholar 

  26. Wang, Y. F.; Narayanan, S. R.; Wu, W. Field-assisted splitting of pure water based on deep-sub-debye-length nanogap electrochemical cells. ACS Nano 2017, 11, 8421–8428.

    Article  CAS  Google Scholar 

  27. Yang, G. Q.; Yu, S. L.; Kang, Z. Y.; Li, Y. F.; Bender, G.; Pivovar, B. S.; Green, J. B.; Cullen, D. A.; Zhang, F. Y. Building electron/proton nanohighways for full utilization of water splitting catalysts. Adv. Energy Mater. 2020, 10, 1903871.

    Article  CAS  Google Scholar 

  28. Jiang, S. F.; Yi, B. L.; Cao, L. S.; Song, W.; Zhao, Q.; Yu, H. M.; Shao, Z. G. Development of advanced catalytic layer based on vertically aligned conductive polymer arrays for thin-film fuel cell electrodes. J. Power Sources 2016, 329, 347–354.

    Article  CAS  Google Scholar 

  29. Koenigsmann, C.; Sutter, E.; Chiesa, T. A.; Adzic, R. R.; Wong, S. S. Highly enhanced electrocatalytic oxygen reduction performance observed in bimetallic palladium-based nanowires prepared under ambient, surfactantless conditions. Nano Lett. 2012, 12, 2013–2020.

    Article  CAS  Google Scholar 

  30. Tian, M. M.; Shi, S.; Shen, Y. L.; Yin, H. M. PtRu alloy nanoparticles supported on nanoporous gold as an efficient anode catalyst for direct methanol fuel cell. Electrochim. Acta 2019, 293, 390–398.

    Article  CAS  Google Scholar 

  31. Lopez-Haro, M.; Guétaz, L.; Printemps, T.; Morin, A.; Escribano, S.; Jouneau, P. H.; Bayle-Guillemaud, P.; Chandezon, F.; Gebel, G. Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat. Commun. 2014, 5, 5229.

    Article  CAS  Google Scholar 

  32. Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9–35.

    Article  CAS  Google Scholar 

  33. Zhao, Y.; Zhang, W. Q.; Yin, H. M.; He, J.; Ding, Y. Surface alloying of Pt monolayer on nanoporous gold for enhanced oxygen reduction. Electrochim. Acta 2018, 274, 9–15.

    Article  CAS  Google Scholar 

  34. Li, J.; Yin, H. M.; Li, X. B.; Okunishi, E.; Shen, Y. L.; He, J.; Tang, Z. K.; Wang, W. X.; Yücelen, E.; Li, C. et al. Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction. Nat. Energy 2017, 2, 17111.

    Article  CAS  Google Scholar 

  35. Hou, J. B.; Yang, M.; Ke, C. C.; Wei, G. H.; Zhang, J. L. Optimizing the structural design of a nanocomposite catalyst layer for PEM fuel cells for improving mass-specific power density. Nanoscale 2020, 12, 13858–13878.

    Article  CAS  Google Scholar 

  36. Ostroverkh, A.; Johánek, V.; Dubau, M.; Kúš, P.; Khalakhan, I.; Šmíd, B.; Fiala, R.; Václavü, M.; Ostroverkh, Y.; Matolín, V. Optimization of ionomer-free ultra-low loading Pt catalyst for anode/cathode of PEMFC via magnetron sputtering. Int. J. Hydrogen Energy 2019, 44, 19344–19356.

    Article  CAS  Google Scholar 

  37. Shu, T.; Liao, S. J.; Hsieh, C. T.; Roy, A. K.; Liu, Y. Y.; Tzou, D. Y.; Chen, W. Y. Fabrication of platinum electrocatalysts on carbon nanotubes using atomic layer deposition for proton exchange membrane fuel cells. Electrochim. Acta 2012, 75, 101–107.

    Article  CAS  Google Scholar 

  38. Kim, J. M.; Kim, J. H.; Kim, J.; Lim, Y.; Kim, Y.; Alam, A.; Lee, J.; Ju, H.; Ham, H. C.; Kim, J. Y. Synergetic structural transformation of Pt electrocatalyst into advanced 3D architectures for hydrogen fuel cells. Adv. Mater, in press, DOI: https://doi.org/10.1002/adma.202002210.

  39. Sheng, W. C.; Gasteiger, H. A.; Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs. alkaline electrolytes. J. Electrochem. Soc. 2010, 157, B1529–B1536.

    Article  CAS  Google Scholar 

  40. Tran, Q. C.; An, H.; Ha, H.; Nguyen, V. T.; Quang, N. D.; Kim, H. Y.; Choi, H. S. Robust graphene-wrapped PtNi nanosponge for enhanced oxygen reduction reaction performance. J. Mater. Chem. A 2018, 6, 8259–8264.

    Article  CAS  Google Scholar 

  41. Liu, P.; Guan, P. F.; Hirata, A.; Zhang, L.; Chen, L. Y.; Wen, Y. R.; Ding, Y.; Fujita, T.; Erlebacher, J.; Chen, M. W. Visualizing under-coordinated surface atoms on 3D nanoporous gold catalysts. Adv. Mater. 2016, 28, 1753–1759.

    Article  CAS  Google Scholar 

  42. Xiao, B. B.; Lang, X. Y.; Jiang, Q. Pt monatomic wire supported on graphene nanoribbon for oxygen reduction reaction. RSC Adv. 2014, 4, 28400–28408.

    Article  CAS  Google Scholar 

  43. Jung, S. M.; Yun, S. W.; Kim, J. H.; You, S. H.; Park, J.; Lee, S.; Chang, S. H.; Chae, S. C.; Joo, S. H.; Jung, Y. et al. Selective electrocatalysis imparted by metal-insulator transition for durability enhancement of automotive fuel cells. Nat. Catal. 2020, 3, 639–648.

    Article  CAS  Google Scholar 

  44. Cognard, G.; Ozouf, G.; Beauger, C.; Berthomé, G.; Riassetto, D.; Dubau, L.; Chattot, R.; Chatenet, M.; Maillard, F. Benefits and limitations of Pt nanoparticles supported on highly porous antimony-doped tin dioxide aerogel as alternative cathode material for proton-exchange membrane fuel cells. Appl. Catal. B: Environ. 2017, 201, 381–390.

    Article  CAS  Google Scholar 

  45. Liu, Y. X.; Murphy, M.; Baker, D.; Gu, W. B.; Ji, C. X.; Jorne, J.; Gasteiger, H. A. Determination of electrode sheet resistance in cathode catalyst layer by AC impedance. ECS Trans. 2007, 11, 473–484.

    Article  CAS  Google Scholar 

  46. Zhao, X. S.; Li, W.; Fu, Y. Z.; Manthiram, A. Influence of ionomer content on the proton conduction and oxygen transport in the carbon-supported catalyst layers in DMFC. Int. J. Hydrogen Energy 2012, 37, 9845–9852.

    Article  CAS  Google Scholar 

  47. Thompson, E. L.; Baker, D. R. Proton conduction on ionomer-free Pt surfaces. ECS Trans. 2011, 41, 709–720.

    Article  CAS  Google Scholar 

  48. Xia, L. C.; Zhang, C. Z.; Hu, M. H.; Jiang, S. F.; Chin, C. S.; Gao, Z. C.; Liao, Q. Investigation of parameter effects on the performance of high-temperature PEM fuel cell. Int. J. Hydrogen Energy 2018, 43, 23441–23449.

    Article  CAS  Google Scholar 

  49. Conde, J. J.; Folgado, M. A.; Ferreira-Aparicio, P.; Chaparro, A. M.; Chowdhury, A.; Kusoglu, A.; Cullen, D.; Weber, A. Z. Mass-transport properties of electrosprayed Pt/C catalyst layers for polymer-electrolyte fuel cells. J. Power Sources 2019, 427, 250–259.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52073214, 21603161, 51671145, 51761165012 and U1804255), the National Science Fund for Distinguished Young Scholars (No. 51825102), and the Tianjin Municipal Major Project of New Materials (No. 16ZXCLGX00120).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia He or Yi Ding.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, S., Wen, X., Sang, Q. et al. Ultrathin nanoporous metal electrodes facilitate high proton conduction for low-Pt PEMFCs. Nano Res. 14, 2681–2688 (2021). https://doi.org/10.1007/s12274-020-3272-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3272-0

Keywords

Navigation