Skip to main content
Log in

Single-molecule observation of mechanical isomerization of spirothiopyran and subsequent Click addition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Spirothiopyran (STP) is particularly attractive when used as a mechanophore to endow polymers with both damage-signaling and self-reinforcing capacity. It is, however, not clear the actual force required to induce the cycloreversion of STP into ring-opened thiomerocyanine (TMC), which reacts spontaneously with activated C-C bonds. Here, we used atomic force microscopy (AFM)-based single molecule force spectroscopy (SMFS) to study the mechanochemistry of STP mechanophore. It is found that the ring-opening of STP at room temperature requires forces of ∼ 200–400 pN, depending on the pulling speed. In addition, the reversibility of STP to TMC isomerization is demonstrated. Finally, mechanochemically induced intermolecular Click addition is achieved in single molecule level by pulling STP in the presence of maleimide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gossweiler, G. R.; Hewage, G. B.; Soriano, G.; Wang, Q. M.; Welshofer, G. W.; Zhao, X. H.; Craig, S. L. Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery. ACS Macro Lett. 2014, 3, 216–219.

    Article  CAS  Google Scholar 

  2. Black, A. L.; Lenhardt, J. M.; Craig, S. L. From molecular mechanochemistry to stress-responsive materials. J. Mater. Chem. 2011, 21, 1655–1663.

    Article  CAS  Google Scholar 

  3. Church, D. C.; Peterson, G. I.; Boydston, A. J. Comparison of mechanochemical chain scission rates for linear versus three-arm star polymers in strong acoustic fields. ACS Macro Lett. 2014, 3, 648–651.

    Article  CAS  Google Scholar 

  4. Caruso, M. M.; Davis, D. A.; Shen, Q. L.; Odom, S. A.; Sottos, N. R.; White, S. R.; Moore, J. S. Mechanically-induced chemical changes in polymeric materials. Chem. Rev. 2009, 109, 5755–5798.

    Article  CAS  Google Scholar 

  5. Kean, Z. S.; Craig, S. L. Mechanochemical remodeling of synthetic polymers. Polymer 2012, 53, 1035–1048.

    Article  CAS  Google Scholar 

  6. Lenhardt, J. M.; Black, A. L.; Beiermann, B. A.; Steinberg, B. D.; Rahman, F.; Samborski, T.; Elsakr, J.; Moore, J. S.; Sottos, N. R.; Craig, S. L. Characterizing the mechanochemically active domains in gem-dihalocyclopropanated polybutadiene under compression and tension. J. Mater. Chem. 2011, 21, 8454–8459.

    Article  CAS  Google Scholar 

  7. Lenhardt, J. M.; Black, A. L.; Craig, S. L. gem-Dichlorocyclopropanes as abundant and efficient mechanophores in polybutadiene copolymers under mechanical stress. J. Am. Chem. Soc. 2009, 131, 10818–10819.

    Article  CAS  Google Scholar 

  8. Izak-Nau, E.; Campagna, D.; Baumann, C.; Göstl, R. Polymer mechanochemistry-enabled pericyclic reactions. Polym. Chem. 2020, 11, 2274–2299.

    Article  CAS  Google Scholar 

  9. Bowser, B. H.; Craig, S. L. Empowering mechanochemistry with multimechanophore polymer architectures. Polym. Chem. 2018, 9, 3583–3593.

    Article  CAS  Google Scholar 

  10. Brown, C. L.; Craig, S. L. Molecular engineering of mechanophore activity for stress-responsive polymeric materials. Chem. Sci. 2015, 6, 2158–2165.

    Article  CAS  Google Scholar 

  11. Li, J.; Nagamani, C.; Moore, J. S. Polymer mechanochemistry: From destructive to productive. Acc. Chem. Res. 2015, 48, 2181–2190.

    Article  CAS  Google Scholar 

  12. Patrick, J. F.; Robb, M. J.; Sottos, N. R.; Moore, J. S.; White, S. R. Polymers with autonomous life-cycle control. Nature 2016, 540, 363–370.

    Article  CAS  Google Scholar 

  13. May, P. A.; Moore, J. S. Polymer mechanochemistry: Techniques to generate molecular force via elongational flows. Chem. Soc. Rev. 2013, 42, 7497–7506.

    Article  CAS  Google Scholar 

  14. Wang, Z. J.; Ma, Z. Y.; Wang, Y.; Xu, Z. J.; Luo, Y. Y.; Wei, Y.; Jia, X. R. A novel mechanochromic and photochromic polymer film: When rhodamine joins polyurethane. Adv. Mater. 2015, 27, 6469–6474.

    Article  CAS  Google Scholar 

  15. Groote, R.; Jakobs, R. T. M.; Sijbesma, R. P. Mechanocatalysis: Forcing latent catalysts into action. Polym. Chem. 2013, 4, 4846–4859.

    Article  CAS  Google Scholar 

  16. Larsen, M. B.; Boydston, A. J. “Flex-activated” mechanophores: Using polymer mechanochemistry to direct bond bending activation. J. Am. Chem. Soc. 2013, 135, 8189–8192.

    Article  CAS  Google Scholar 

  17. Ramirez, A. L. B.; Kean, Z. S.; Orlicki, J. A.; Champhekar, M.; Elsakr, S. M.; Krause, W. E.; Craig, S. L. Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat. Chem. 2013, 5, 757–761.

    Article  CAS  Google Scholar 

  18. Chen, Y. L.; Spiering, A. J. H.; Karthikeyan, S.; Peters, G. W. M.; Meijer, E. W.; Sijbesma, R. P. Mechanically induced chemiluminescence from polymers incorporating a 1, 2-dioxetane unit in the main chain. Nat. Chem. 2012, 4, 559–562.

    Article  CAS  Google Scholar 

  19. Zhang, H.; Gao, F.; Cao, X. D.; Li, Y. Q.; Xu, Y. Z.; Weng, W. G.; Boulatov, R. Mechanochromism and mechanical-force-triggered cross-linking from a single reactive moiety incorporated into polymer chains. Angew. Chem., Int. Ed. 2016, 55, 3040–3044.

    Article  CAS  Google Scholar 

  20. Wang, J. P.; Kouznetsova, T. B.; Boulatov, R.; Craig, S. L. Mechanical gating of a mechanochemical reaction cascade. Nat. Commun. 2016, 7, 13433.

    Article  CAS  Google Scholar 

  21. Grandbois, M.; Beyer, M.; Rief, M.; Clausen-Schaumann, H.; Gaub, H. E. How strong is a covalent bond? Science 1999, 283, 1727–1730.

    Article  CAS  Google Scholar 

  22. Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 1997, 276, 1109–1112.

    Article  CAS  Google Scholar 

  23. He, C. Z.; Hu, C. G.; Hu, X. D.; Hu, X. T.; Xiao, A.; Perkins, T. T.; Li, H. B. Direct observation of the reversible two-state unfolding and refolding of an α/β protein by single-molecule atomic force microscopy. Angew. Chem., Int. Ed. 2015, 54, 9921–9925.

    Article  CAS  Google Scholar 

  24. Xue, Y. R.; Li, X.; Li, H. B.; Zhang, W. K. Quantifying thiol-gold interactions towards the efficient strength control. Nat. Commun. 2014, 5, 4348.

    Article  CAS  Google Scholar 

  25. Huang, W. M.; Zhu, Z. S.; Wen, J.; Wang, X.; Qin, M.; Cao, Y.; Ma, H. B.; Wang, W. Single molecule study of force-induced rotation of carbon-carbon double bonds in polymers. ACS Nano 2017, 11, 194–203.

    Article  CAS  Google Scholar 

  26. Sluysmans, D.; Hubert, S.; Bruns, C. J.; Zhu, Z. X.; Stoddart, J. F.; Duwez, A. S. Synthetic oligorotaxanes exert high forces when folding under mechanical load. Nat. Nanotechnol. 2018, 13, 209–213.

    Article  CAS  Google Scholar 

  27. Cui, S. X.; Liu, C. J.; Zhang, X. Simple method to isolate single polymer chains for the direct measurement of the desorption force. Nano Lett. 2003, 3, 245–248.

    Article  CAS  Google Scholar 

  28. Zheng, P.; Takayama, S. I. J.; Mauk, A. G.; Li, H. B. Hydrogen bond strength modulates the mechanical strength of ferric-thiolate bonds in rubredoxin. J. Am. Chem. Soc. 2012, 134, 4124–4131.

    Article  CAS  Google Scholar 

  29. Zhang, W. K.; Zhang, X. Single molecule mechanochemistry of macromolecules. Prog. Polym. Sci. 2003, 28, 1271–1295.

    Article  CAS  Google Scholar 

  30. Cai, W. H.; Xiao, C.; Qian, L. M.; Cui, S. X. Detecting van der Waals forces between a single polymer repeating unit and a solid surface in high vacuum. Nano Res. 2019, 12, 57–61.

    Article  CAS  Google Scholar 

  31. Xia, J. H.; Li, H. B.; Xu, H. P. Measuring the strength of S/Se based dynamic covalent bonds. Acta Polym. Sin. 2020, 51, 205–213.

    Google Scholar 

  32. Huang, W. M.; Wu, X.; Gao, X.; Yu, Y. F.; Lei, H.; Zhu, Z. S.; Shi, Y.; Chen, Y. L.; Qin, M.; Wang, W. et al. Maleimide-thiol adducts stabilized through stretching. Nat. Chem. 2019, 11, 310–319.

    Article  CAS  Google Scholar 

  33. Li, Z. D.; Song, Y.; Li, A. S.; Xu, W. Q.; Zhang, W. K. Direct observation of the wrapping/unwrapping of ssDNA around/from a SWCNT at the single-molecule level: Towards tuning the binding mode and strength. Nanoscale 2018, 10, 18586–18596.

    Article  CAS  Google Scholar 

  34. Lü, X. J.; Song, Y.; Zhang, W. K. Single molecule force spectroscopy study on the apparent nanomechanical properties of polyethylene single crystals. Chem. J. Chin. Univ. 2018, 39, 166–171.

    Google Scholar 

  35. Naranjo, T.; Lemishko, K. M.; de Lorenzo, S.; Somoza, Á.; Ritort, F.; Pérez, E. M.; Ibarra, B. Dynamics of individual molecular shuttles under mechanical force. Nat. Commun. 2018, 9, 4512.

    Article  Google Scholar 

  36. Li, X.; Xue, Y. R.; Song, Y.; Zhang, W. K. Coordinate interaction between monosulfide and Au surfaces. Chem. J. Chin. Univ. 2018, 39, 2774–2780.

    CAS  Google Scholar 

  37. Klukovich, H. M.; Kouznetsova, T. B.; Kean, Z. S.; Lenhardt, J. M.; Craig, S. L. A backbone lever-arm effect enhances polymer mechanochemistry. Nat. Chem. 2013, 5, 110–114.

    Article  CAS  Google Scholar 

  38. Wang, J. P.; Kouznetsova, T. B.; Niu, Z. B.; Ong, M. T.; Klukovich, H. M.; Rheingold, A. L.; Martinez, T. J.; Craig, S. L. Inducing and quantifying forbidden reactivity with single-molecule polymer mechanochemistry. Nat. Chem. 2015, 7, 323–327.

    Article  CAS  Google Scholar 

  39. Gossweiler, G. R.; Kouznetsova, T. B.; Craig, S. L. Force-rate characterization of two spiropyran-based molecular force probes. J. Am. Chem. Soc. 2015, 137, 6148–6151.

    Article  CAS  Google Scholar 

  40. Barbee, M. H.; Kouznetsova, T.; Barrett, S. L.; Gossweiler, G. R.; Lin, Y. J.; Rastogi, S. K.; Brittain, W. J.; Craig, S. L. Substituent effects and mechanism in a mechanochemical reaction. J. Am. Chem. Soc. 2018, 140, 12746–12750.

    Article  CAS  Google Scholar 

  41. Zhang, H.; Li, X.; Lin, Y. J.; Gao, F.; Tang, Z.; Su, P. F.; Zhang, W. K.; Xu, Y. Z.; Weng, W. G.; Boulatov, R. Multi-modal mechanophores based on cinnamate dimers. Nat. Commun. 2017, 8, 1147.

    Article  CAS  Google Scholar 

  42. Chung, J.; Kushner, A. M.; Weisman, A. C.; Guan, Z. B. Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers. Nat. Mater. 2014, 13, 1055–1062.

    Article  CAS  Google Scholar 

  43. Davis, D. A.; Hamilton, A.; Yang, J. L.; Cremar, L. D.; Van Gough, D.; Potisek, S. L.; Ong, M. T.; Braun, P. V.; Martínez, T. J.; White, S. R. et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 2009, 459, 68–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China ((Nos. 21525418 and 21827805) (W. Z.), (Nos. 21774106 and 21574108) (W. W.)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wengui Weng or Wenke Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, R., Li, X., Xiao, N. et al. Single-molecule observation of mechanical isomerization of spirothiopyran and subsequent Click addition. Nano Res. 14, 2654–2658 (2021). https://doi.org/10.1007/s12274-020-3268-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3268-9

Keywords

Navigation