Skip to main content
Log in

An ultra-stable microporous supramolecular framework with highly selective adsorption and separation of water over ethanol

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A microporous supramolecular framework with high water and thermal stability can selectively absorb water molecules over methanol or ethanol due to the suitable channels. The model separation test on columns shows that an ultra-pure ethanol (99.9%) can be obtained from the mixture of ethanol/water (95:5). Additionally, after refluxing the desolvated sample in 95% ethanol at 60 °C for 5 h, the purity of ethanol rises up to 97.43%, which is obviously higher than 96.56% for 4 Å molecular sieves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uchida, S.; Mizuno, N. Zeotype ionic crystal of Cs5[Cr3O(OOCH)6(H2O)3][α-CoW12O40]·7.5H2O with shape-selective adsorption of water. J. Am. Chem. Soc. 2004, 126, 1602–1603.

    Article  CAS  Google Scholar 

  2. Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. USA 2006, 103, 11206–11210.

    Article  CAS  Google Scholar 

  3. El-Roz, M.; Bazin, P.; Čelič, T. B.; Logar, N. Z.; Thibault-Starzyk, F. Pore occupancy changes water/ethanol separation in a metal-organic framework-quantitative map of coadsorption by IR. J. Phys. Chem. C 2015, 119, 22570–22576.

    Article  CAS  Google Scholar 

  4. Naik, P. V.; Wee, L. H.; Meledina, M.; Turner, S.; Li, Y. B.; Van Tendeloo, G.; Martens, J. A.; Vankelecom, I. F. J. PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation. J. Mater. Chem. A 2016, 4, 12790–12798.

    Article  CAS  Google Scholar 

  5. Shin, Y.; Taufique, M. F. N.; Devanathan, R.; Cutsforth, E. C.; Lee, J.; Liu, W.; Fifield, L. S.; Gotthold, D. W. Highly selective supported graphene oxide membranes for water-ethanol separation. Sci Rep. 2019, 9, 2251.

    Article  CAS  Google Scholar 

  6. de Lima, G. F.; Mavrandonakis, A.; de Abreu, H. A.; Duarte, H. A.; Heine, T. Mechanism of alcohol-water separation in metal-organic frameworks. J. Phys. Chem. C 2013, 117, 4124–4130.

    Article  CAS  Google Scholar 

  7. Lively, R. P.; Dose, M. E.; Thompson, J. A.; McCool, B. A.; Chance, R. R.; Koros, W. J. Ethanol and wateradsorption in methanol-derived ZIF-71. Chem. Commun. 2011, 47, 8667–8669.

    Article  CAS  Google Scholar 

  8. Sha, Y. F.; Bai, S. Z.; Lou, J. Y.; Wu, D.; Liu, B. Z.; Ling, Y. Tuning the adsorption behaviors of water, methanol, and ethanol in a porous material by varying the flexibility of substituted groups. Dalton Trans. 2016, 45, 7235–7239.

    Article  CAS  Google Scholar 

  9. Zhang, Y. J.; Chen, C.; Cai, L. X.; Tan, B.; Yang, X. D.; Zhang, J.; Ji, M. Post-cycloaddition modification of a porous MOF for improved GC separation of ethanol and water. Dalton Trans. 2017, 46, 7092–7097.

    Article  CAS  Google Scholar 

  10. Zhou, H.; Mouzon, J.; Farzaneh, A.; Antzutkin, O. N.; Grahn, M.; Hedlund, J. Colloidal defect-free silicalite-1 single crystals: Preparation, structure characterization, adsorption, and separation properties for alcohol/water mixtures. Langmuir 2015, 31, 8488–8494.

    Article  CAS  Google Scholar 

  11. Borjigin, T.; Sun, F. X.; Zhang, J. L.; Cai, K.; Ren, H.; Zhu, G. S. A microporous metal-organic framework with high stability for GC separation of alcohols from water. Chem. Commun. 2012, 48, 7613–7615.

    Article  CAS  Google Scholar 

  12. Sun, J. K.; Ji, M.; Chen, C.; Wang, W. G.; Wang, P.; Chen, R. P.; Zhang, J. A charge-polarized porous metal-organic framework for gas chromatographic separation of alcohols from water. Chem. Commun. 2013, 49, 1624–1626.

    Article  CAS  Google Scholar 

  13. Kim, H.; Yang, S.; Rao, S. R.; Narayanan, S.; Kapustin, E. A.; Furukawa, H.; Umans, A. S.; Yaghi, O. M.; Wang, E. N. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 2017, 356, 430–434.

    Article  CAS  Google Scholar 

  14. Xu, J. Y.; Zhu, C. Q.; Wang, Y. F.; Li, H.; Huang, Y. F.; Shen, Y. T.; Francisco, J. S.; Zeng, X. C.; Meng, S. Water transport through subnanopores in the ultimate size limit: Mechanism from molecular dynamics. Nano Res. 2019, 12, 587–592.

    Article  CAS  Google Scholar 

  15. Krishna, R. Separating mixtures by exploiting molecular packing effects in microporous materials. Phys. Chem. Chem. Phys. 2015, 17, 39–59.

    Article  CAS  Google Scholar 

  16. Cadiau, A.; Belmabkhout, Y.; Adil, K.; Bhatt, P. M.; Pillai, R. S.; Shkurenko, A.; Martineau-Corcos, C.; Maurin, G.; Eddaoudi, M. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science 2017, 356, 731–735.

    Article  CAS  Google Scholar 

  17. Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.

    Article  CAS  Google Scholar 

  18. Li, H.; Li, L. B.; Lin, R. B.; Zhou, W.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem 2019, 1, 100006.

    Article  Google Scholar 

  19. Kawano, M.; Fujita, M. Direct observation of crystalline-state guest exchange in coordination networks. Coord. Chem. Rev. 2007, 251, 2592–2605.

    Article  CAS  Google Scholar 

  20. Zhang, J. P.; Liao, P. Q.; Zhou, H. L.; Lin, R. B.; Chen, X. M. Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. Chem. Soc. Rev. 2014, 43, 5789–5814.

    Article  CAS  Google Scholar 

  21. He, W. Y.; Ren, X. Y.; Yan, Z. Q.; Wang, J.; Lu, L. H. Porous β-cyclodextrin nanotubular assemblies enable high-efficiency removal of bisphenol micropollutants from aquatic systems. Nano Res. 2020, 13, 1933–1942.

    Article  CAS  Google Scholar 

  22. Lu, C.; Li, Z. Z.; Xia, Z.; Ci, H. N.; Cai, J. S.; Song, Y. Z.; Yu, L. H.; Yin, W. J.; Dou, S. X.; Sun, J. Y.. et al. Confining MOF-derived snse nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage. Nano Res. 2019, 12, 3051–3058.

    Article  CAS  Google Scholar 

  23. Hanikel, N.; Prévot, M. S.; Fathieh, F.; Kapustin, E. A.; Lyu, H.; Wang, H. Z.; Diercks, N. J.; Glover, T. G.; Yaghi, O. M. Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS Cent. Sci. 2019, 5, 1699–1706.

    Article  CAS  Google Scholar 

  24. Kalmutzki, M. J.; Diercks, C. S.; Yaghi, O. M. Metal-organic frameworks for water harvesting from air. Adv. Mater. 2018, 30, 1704304.

    Article  CAS  Google Scholar 

  25. Kim, H.; Rao, S. R.; Kapustin, E. A.; Zhao, L.; Yang, S.; Yaghi, O. M.; Wang, E. N. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 2018, 9, 1191.

    Article  CAS  Google Scholar 

  26. Seo, Y. K.; Yoon, J. W.; Lee, J. S.; Hwang, Y. K.; Jun, C. H.; Chang, J. S.; Wuttke, S.; Bazin, P.; Vimont, A.; Daturi, M. et al. Energy-efficient dehumidification over hierachically porous metal-organic frameworks as advanced water adsorbents. Adv. Mater. 2012, 24, 806–810.

    Article  CAS  Google Scholar 

  27. Jia, W.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration. Nano Res. 2020, 13, 2973–2978.

    Article  CAS  Google Scholar 

  28. Hu, J. F.; Xu, Y. Q.; Zhang, D. K.; Chen, B. K.; Lin, Z. G.; Hu, C. W. A highly symmetric ionic crystal constructed by polyoxoniobates and cobalt complexes for preferential water uptake over alcohols. Inorg. Chem. 2017, 56, 10844–10847.

    Article  CAS  Google Scholar 

  29. Slabbert, C.; Rademeyer, M. One-dimensional halide-bridged polymers of metal cations with mono-heterocyclic donor ligands or cations: A review correlating chemical composition, connectivity and chain conformation. Coord. Chem. Rev. 2015, 288, 18–49.

    Article  CAS  Google Scholar 

  30. Hwang, I. H.; Jo, Y. D.; Kim, H.; Kim, K. B.; Jung, K. D.; Kim, C.; Kim, Y.; Kim, S. J. Catalytic transesterification reactions of one-dimensional coordination polymers containing paddle-wheel-type units connected by various bridging ligands. Inorg. Chim. Acta 2013, 402, 39–45.

    Article  CAS  Google Scholar 

  31. Eguchi, R.; Uchida, S.; Mizuno, N. Inverse and high CO2/C2H2 sorption selectivity in flexible organic-inorganic ionic crystals. Angew. Chem., Int. Ed. 2012, 51, 1635–1639.

    Article  CAS  Google Scholar 

  32. Lin, X. M.; Li, T. T.; Wang, Y. W.; Zhang, L.; Su, C. Y. Two ZnII metal-organic frameworks with coordinatively unsaturated metal sites: Structures, adsorption, and catalysis. Chem. Asian J. 2012, 7, 2796–2804.

    Article  CAS  Google Scholar 

  33. Zhang, K. L.; Zhong, Z. Y.; Zhang, L.; Jing, C. Y.; Daniels, L. M.; Walton, R. I. Synthesis, characterization and properties of a family of lead(II)-organic frameworks based on a multi-functional ligand 2-amino-4-sulfobenzoic acid exhibiting auxiliary ligand-dependent dehydration-rehydration behaviours. Dalton Trans. 2014, 43, 11597–11610.

    Article  CAS  Google Scholar 

  34. Chesman, A. S. R.; Turner, D. R.; Deacon, G. B.; Batten, S. R. Transformation of a 1D to 3D coordination polymer mediated by low temperature lattice solvent loss. Chem. Commun. 2010, 46, 4899–4901.

    Article  CAS  Google Scholar 

  35. Liu, H.; Song, C. Y.; Huang, R. W.; Zhang, Y.; Xu, H.; Li, M. J.; Zang, S. Q.; Gao, G. G. Acid-base-triggered structural transformation of a polyoxometalate core inside a dodecahedrane-like silver thiolate shell. Angew. Chem., Int. Ed. 2016, 55, 3699–3703.

    Article  CAS  Google Scholar 

  36. Saha, R.; Biswas, S.; Dey, S. K.; Sen, A.; Roy, M.; Steele, I. M.; Dey, K.; Ghosh, A.; Kumar, S. Thermally induced single crystal to single crystal transformation leading to polymorphism. Spectrochim. Acta Part A 2014, 130, 526–533.

    Article  CAS  Google Scholar 

  37. Yuan, S.; Deng, Y. K.; Sun, D. Unprecedented second-timescale blue/green emissions and iodine-uptake-induced single-crystal-to-single-crystal transformation in ZnII/CdII metal-organic frameworks. Chem. Eur. J. 2014, 20, 10093–10098.

    Article  CAS  Google Scholar 

  38. Bourrelly, S.; Moulin, B.; Rivera, A.; Maurin, G.; Devautour-Vinot, S.; Serre, C.; Devic, T.; Horcajada, P.; Vimont, A.; Clet, G. et al. Explanation of the adsorption of polar vapors in the highly flexible metal organic framework MIL-53(Cr). J. Am. Chem. Soc. 2010, 132, 9488–9498.

    Article  CAS  Google Scholar 

  39. Canivet, J.; Fateeva, A.; Guo, Y. M.; Coasne, B.; Farrusseng, D. Water adsorption in MOFs: Fundamentals and applications. Chem. Soc. Rev. 2014, 43, 5594–5617.

    Article  CAS  Google Scholar 

  40. Furukawa, H.; Gandara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 2014, 136, 4369–4381.

    Article  CAS  Google Scholar 

  41. Khutia, A.; Rammelberg, H. U.; Schmidt, T.; Henninger, S.; Janiak, C. Water sorption cycle measurements on functionalized MIL-101Cr for heat transformation application. Chem. Mater. 2013, 25, 790–798.

    Article  CAS  Google Scholar 

  42. Reinsch, H.; Marszalek, B.; Wack, J.; Senker, J.; Gil, B.; Stock, N. A new Al-MOF based on a unique column-shaped inorganic building unit exhibiting strongly hydrophilic sorption behaviour. Chem. Commun. 2012, 48, 9486–9488.

    Article  CAS  Google Scholar 

  43. Jasuja, H.; Burtch, N. C.; Huang, Y. G.; Cai, Y.; Walton, K. S. Kinetic water stability of an isostructural family of zinc-based pillared metal-organic frameworks. Langmuir 2013, 29, 633–642.

    Article  CAS  Google Scholar 

  44. Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S. Characterization of metal-organic frameworks by water adsorption. Micropor. Mesopor. Mater. 2009, 120, 325–330.

    Article  CAS  Google Scholar 

  45. Ren, C. X.; Ji, M.; Yao, Q. X.; Cai, L. X.; Tan, B.; Zhang, J. Targeted functionalization of porous materials for separation of alcohol/water mixtures by modular assembly. Chem. Eur. J. 2014, 20, 14846–14852.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledged the financial support from the National Key Research and Development Program of China (No. 2017YFA0700102), the National Natural Science Foundation of China (Nos. 21871266 and 21731006), the Key Research Program of Frontier Science CAS (No. QYZDY-SSW-SLH025), and Youth Innovation Promotion Association CAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Falu Hu or Mingyan Wu.

Electronic Supplementary Material

12274_2020_3258_MOESM1_ESM.pdf

An ultra-stable microporous supramolecular framework with highly selective adsorption and separation of water over ethanol

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, Z., Pang, J., Hu, F. et al. An ultra-stable microporous supramolecular framework with highly selective adsorption and separation of water over ethanol. Nano Res. 14, 2584–2588 (2021). https://doi.org/10.1007/s12274-020-3258-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3258-y

Keywords

Navigation