Skip to main content
Log in

Advances of CNT-based systems in thermal management

  • Perspective Review
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Effective thermal management has become extremely urgent for electronics due to the massive heat originated from the ever-rising power density. With the merits of high thermal conductivity, good chemical stability and desirable mechanical properties, carbon nanotubes (CNTs) are considered to have great potential to be widely used in heat dissipation devices. This article describes the progress on thermal conductivity of CNT-reinforced composites, aligned CNT materials (aligned CNT arrays, films/buckypapers and fibers) as high thermal conductors, experimental and theoretical results of CNT-substrate interface resistance, and utilizations of CNTs in the passive heat dissipation (natural convection, heat radiation, and phase-change heat transfer). Finally, the challenges and prospects are discussed to provide some hints in the future studies. It is believed that CNTs can play an important role in thermal management of electronics, especially in the portable electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berber, S.; Kwon, Y. K.; Tománek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613–4616.

    Article  CAS  Google Scholar 

  2. Li, Q. W.; Liu, C. H.; Wang, X. S.; Fan, S. S. Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method. Nanotechnology 2009, 20, 145702.

    Article  CAS  Google Scholar 

  3. Yang, X. H.; Liu, P.; Zhou, D. L.; Gao, F.; Wang, X. H.; Lv, S. W.; Yuan, Z.; Jin, X.; Zhao, W.; Wei, H. M. et al. High temperature performance of coaxial h-BN/CNT wires above 1,000 °C: Thermionic electron emission and thermally activated conductivity. Nano Res. 2019, 72, 1855–1861.

    Article  CAS  Google Scholar 

  4. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    Article  CAS  Google Scholar 

  5. Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 2001, 87, 215502.

    Article  CAS  Google Scholar 

  6. Naito, K.; Yang, J. M.; Xu, Y. B.; Kagawa, Y. Enhancing the thermal conductivity of polyacrylonitrile- and pitch-based carbon fibers by grafting carbon nanotubes on them. Carbon 2010, 48, 1849–1857.

    Article  CAS  Google Scholar 

  7. Bai, Y. X.; Yue, H. J.; Wang, J.; Shen, B. Y.; Sun, S. L.; Wang, S. J.; Wang, H. D.; Li, X. D.; Xu, Z. P.; Zhang, R. F. et al. Super-durable ultralong carbon nanotubes. Science 2020, 369, 1104–1106.

    Article  CAS  Google Scholar 

  8. Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z. et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 2018, 13, 589–595.

    Article  CAS  Google Scholar 

  9. Chen, J.; Zhang, G.; Li, B. W. Substrate coupling suppresses size dependence of thermal conductivity in supported graphene. Nanoscale 2013, 5, 532–536.

    Article  CAS  Google Scholar 

  10. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 70, 569–581.

    Article  CAS  Google Scholar 

  11. Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H. J. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2006, 6, 96–100.

    Article  CAS  Google Scholar 

  12. Fujii, M.; Zhang, X.; Xie, H. Q.; Ago, H.; Takahashi, K.; Ikuta, T.; Abe, H.; Shimizu, T. Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 2005, 95, 065502.

    Article  CAS  Google Scholar 

  13. Choi, T. Y.; Poulikakos, D.; Tharian, J.; Sennhauser, U. Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method. Nano Lett. 2006, 6, 1589–1593.

    Article  CAS  Google Scholar 

  14. Wang, Z. L.; Tang, D. W.; Zheng, X. H.; Zhang, W. G.; Zhu, Y. T. Length-dependent thermal conductivity of single-wall carbon nanotubes: Prediction and measurements. Nanotechnology 2007, 18, 475714.

    Article  CAS  Google Scholar 

  15. Pettes, M. T.; Shi, L. Thermal and structural characterizations of individual single-, double-, and multi-walled carbon nanotubes. Adv. Funct. Mater. 2009, 19, 3918–3925.

    Article  CAS  Google Scholar 

  16. Marconnet, A. M.; Panzer, M. A.; Goodson, K. E. Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev. Mod. Phys. 2013, 85, 1295–1326.

    Article  CAS  Google Scholar 

  17. Mingo, N.; Broido, D. A. Carbon nanotube ballistic thermal conductance and its limits. Phys. Rev. Lett. 2005, 95, 096105.

    Article  CAS  Google Scholar 

  18. Zhang, G.; Li, B. W. Thermal conductivity of nanotubes revisited: Effects of chirality, isotope impurity, tube length, and temperature. J. Chem. Phys. 2005, 123, 114714.

    Article  CAS  Google Scholar 

  19. Zhang, L.; Zhang, G.; Liu, C. H.; Fan, S. S. High-density carbon nanotube buckypapers with superior transport and mechanical properties. Nano Lett. 2012, 12, 4848–4852.

    Article  CAS  Google Scholar 

  20. Wang, X. W.; Zhong, Z. R.; Xu, J. Noncontact thermal characterization of multiwall carbon nanotubes. J. Appl. Phys. 2005, 97, 064302.

    Article  CAS  Google Scholar 

  21. Tong, T.; Yang, A. M.; Zhao, Y.; Kashani, A.; Delzeit, L.; Meyyappan, M. Indium assisted multiwalled carbon nanotube array thermal interface materials. In Proceedings of the 10th Intersociety Conference on Phenomena in Electronics Systems, San Diego, USA, 2006, pp 1406–1411.

  22. Cao, J. X.; Yan, X. H.; Xiao, Y.; Ding, J. W. Thermal conductivity of zigzag single-walled carbon nanotubes: Role of the umklapp process. Phys. Rev. B 2004, 69, 073407.

    Article  CAS  Google Scholar 

  23. Yang, D. J.; Zhang, Q.; Chen, G.; Yoon, S. F.; Ahn, J.; Wang, S. G.; Zhou, Q.; Wang, Q.; Li, J. Q. Thermal conductivity of multiwalled carbon nanotubes. Phys. Rev. B 2002, 66, 165440.

    Article  CAS  Google Scholar 

  24. Lin, W.; Shang, J. T.; Gu, W. T.; Wong, C. P. Parametric study of intrinsic thermal transport in vertically aligned multi-walled carbon nanotubes using a laser flash technique. Carbon 2012, 50, 1591–1603.

    Article  CAS  Google Scholar 

  25. Ivanov, I.; Puretzky, A.; Eres, G.; Wang, H.; Pan, Z. W.; Cui, H. T.; Jin, R. Y.; Howe, J.; Geohegan, D. B. Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays. Appl. Phys. Lett. 2006, 89, 223110.

    Article  CAS  Google Scholar 

  26. Wang, Y.; Huang, L. P.; Liu, Y. Q.; Wei, D. C.; Zhang, H. L.; Kajiura, H.; Li, Y. M. Minimizing purification-induced defects in single-walled carbon nanotubes gives films with improved conductivity. Nano Res. 2009, 2, 865.

    Article  CAS  Google Scholar 

  27. Hone, J.; Llaguno, M. C.; Nemes, N. M.; Johnson, A. T.; Fischer, J. E.; Walters, D. A.; Casavant, M. J.; Schmidt, J.; Smalley, R. E. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 2000, 77, 666–668.

    Article  CAS  Google Scholar 

  28. Biercuk, M. J.; Llaguno, M. C.; Radosavljevic, M.; Hyun, J. K.; Johnson, A. T.; Fischer, J. E. Carbon nanotube composites for thermal management. Appl. Phys. Lett. 2002, 80, 2767–2769.

    Article  CAS  Google Scholar 

  29. Han, Z. D.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011, 36, 914–944.

    Article  CAS  Google Scholar 

  30. Ma, R. Z.; Wu, J.; Wei, B. Q.; Liang, J.; Wu, D. H. Processing and properties of carbon nanotubes-nano-SiC ceramic. J. Mater. Sci. 1998, 33, 5243–5246.

    Article  CAS  Google Scholar 

  31. Curtin, W. A.; Sheldon, B. W. CNT-reinforced ceramics and metals. Mater. Today 2004, 7, 44–49.

    Article  CAS  Google Scholar 

  32. Bakshi, S. R.; Lahiri, D.; Agarwal, A. Carbon nanotube reinforced metal matrix composites -A review. Int. Mater. Rev. 2010, 55, 41–64.

    Article  CAS  Google Scholar 

  33. Chu, K.; Wu, Q. Y.; Jia, C. C.; Liang, X. B.; Nie, J. H.; Tian, W. H.; Gai, G. S.; Guo, H. Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications. Compos. Sci. Technol. 2010, 70, 298–304.

    Article  CAS  Google Scholar 

  34. Subramaniam, C.; Yasuda, Y.; Takeya, S.; Ata, S.; Nishizawa, A.; Futaba, D.; Yamada, T.; Hata, K. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics. Nanoscale 2014, 6, 2669–2674.

    Article  CAS  Google Scholar 

  35. Vadivelu, M. A.; Kumar, C. R.; Joshi, G. M. Polymer composites for thermal management: A review. Compos. Interfaces 2016, 23, 847–872.

    Article  CAS  Google Scholar 

  36. Namasivayam, M.; Shapter, J. Factors affecting carbon nanotube fillers towards enhancement of thermal conductivity in polymer nanocomposites: A review. J. Compos. Mater. 2017, 57, 3657–3668.

    Article  CAS  Google Scholar 

  37. Du, C. Y.; Li, M.; Cao, M.; Feng, S. C.; Guo, H.; Li, B. A. Enhanced thermal and mechanical properties of polyvinlydene fluoride composites with magnetic oriented carbon nanotube. Carbon 2018, 126, 197–207.

    Article  CAS  Google Scholar 

  38. Chung, D. D. L. Materials for thermal conduction. Appl. Therm. Eng. 2001, 27, 1593–1605.

    Article  Google Scholar 

  39. Shen, X.; Wang, Z. Y.; Wu, Y.; Liu, X.; He, Y. B.; Kim, J. K. Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett. 2016, 76, 3585–3593.

    Article  CAS  Google Scholar 

  40. Razeeb, K. M.; Dalton, E.; Cross, G. L. W.; Robinson, A. J. Present and future thermal interface materials for electronic devices. Int. Mater. Rev. 2018, 63, 1–21.

    Article  CAS  Google Scholar 

  41. Dai, W.; Lv, L.; Lu, J. B.; Hou, H.; Yan, Q. W.; Alam, F. E.; Li, Y. F.; Zeng, X. L.; Yu, J. H.; Wei, Q. P. et al. A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano 2019, 13, 1547–1554.

    CAS  Google Scholar 

  42. Liu, C. H.; Huang, H.; Wu, Y.; Fan, S. S. Thermal conductivity improvement of silicone elastomer with carbon nanotube loading. Appl. Phys. Lett. 2004, 84, 4248–4250.

    Article  CAS  Google Scholar 

  43. Wu, Y.; Liu, C. H.; Huang, H.; Fan, S. S. Effects of surface metal layer on the thermal contact resistance of carbon nanotube arrays. Appl. Phys. Lett. 2005, 87, 213108.

    Article  CAS  Google Scholar 

  44. Xu, X. F.; Chen, J.; Zhou, J.; Li, B. W. Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 2018, 30, 1705544.

    Article  CAS  Google Scholar 

  45. Liu, L.; Zhang, Z.; Gou, X. Thermal conductivity of aligned CNT-polyethylene nanocomposites and correlation with the interfacial thermal resistance. Polym. Compos. 2020, 47, 3787–3797.

    Article  CAS  Google Scholar 

  46. Song, P. C.; Liu, C. H.; Fan, S. S. Improving the thermal conductivity of nanocomposites by increasing the length efficiency of loading carbon nanotubes. Appl. Phys. Lett. 2006, 88, 153111.

    Article  CAS  Google Scholar 

  47. Ping, L. Q.; Hou, P. X.; Liu, C.; Cheng, H. M. Vertically aligned carbon nanotube arrays as a thermal interface material. APL Mater. 2019, 7, 020902.

    Article  CAS  Google Scholar 

  48. Nan, C. W.; Liu, G.; Lin, Y. H.; Li, M. Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 2004, 85, 3549–3551.

    Article  CAS  Google Scholar 

  49. Song, Y. S.; Youn, J. R. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 2005, 43, 1378–1385.

    Article  CAS  Google Scholar 

  50. Huxtable, S. T.; Cahill, D. G.; Shenogin, S.; Xue, L. P.; Ozisik, R.; Barone, P.; Usrey, M.; Strano, M. S.; Siddons, G.; Shim, M. et al. Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2003, 2, 731–734.

    Article  CAS  Google Scholar 

  51. Shenogin, S.; Xue, L. P.; Ozisik, R.; Keblinski, P.; Cahill, D. G. Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J. Appl. Phys. 2004, 95, 8136–8144.

    Article  CAS  Google Scholar 

  52. Zhang, L. M.; Wang, J.; Fuentes, C. A.; Zhang, D. X.; van Vuure, A. W.; Seo, J. W.; Seveno, D. Wettability of carbon nanotube fibers. Carbon 2017, 122, 128–140.

    Article  CAS  Google Scholar 

  53. Yue, Z. R.; Jiang, W.; Wang, L.; Gardner, S. D.; Pittman, C. U. Jr. Surface characterization of electrochemically oxidized carbon fibers. Carbon 1999, 37, 1785–1796.

    Article  CAS  Google Scholar 

  54. Pittman, C. U. Jr.; Jiang, W.; Yue, Z. R.; Leon y Leon, C. A. Surface area and pore size distribution of microporous carbon fibers prepared by electrochemical oxidation. Carbon 1999, 37, 85–96.

    Article  CAS  Google Scholar 

  55. Velasco-Santos, C.; Martínez-Hernández, A. L.; Lozada-Cassou, M.; Alvarez-Castillo, A.; Castaño, V. M. Chemical functionalization of carbon nanotubes through an organosilane. Nanotechnology 2002, 13, 495–498.

    Article  CAS  Google Scholar 

  56. Bubert, H.; Haiber, S.; Brandl, W.; Marginean, G.; Heintze, M.; Brüser, V. Characterization of the uppermost layer of plasma-treated carbon nanotubes. Diam. Relat. Mater. 2003, 72, 811–815.

    Article  CAS  Google Scholar 

  57. McNally, T.; Pötschke, P.; Halley, P.; Murphy, M.; Martin, D.; Bell, S. E. J.; Brennan, G. P.; Bein, D.; Lemoine, P.; Quinn, J. P. Polyethylene multiwalled carbon nanotube composites. Polymer 2005, 46, 8222–8232.

    Article  CAS  Google Scholar 

  58. Vahedi, A.; Lahidjani, M. H. S.; Shakhesi, S. Multiscale modeling of thermal conductivity of carbon nanotube epoxy nanocomposites. Phys. B Condens. Matter 2018, 550, 39–46.

    Article  CAS  Google Scholar 

  59. Haggenmueller, R.; Guthy, C.; Lukes, J. R.; Fischer, J. E.; Winey, K. I. Single wall carbon nanotube/polyethylene nanocomposites: Thermal and electrical conductivity. Macromolecules 2007, 40, 2417–2421.

    Article  CAS  Google Scholar 

  60. Xue, Q. Z. Model for the effective thermal conductivity of carbon nanotube composites. Nanotechnology 2006, 77, 1655–1660.

    Article  CAS  Google Scholar 

  61. Singh, I. V.; Tanaka, M.; Endo, M. Effect of interface on the thermal conductivity of carbon nanotube composites. Int. J. Therm. Sci. 2007, 46, 842–847.

    Article  CAS  Google Scholar 

  62. Bagchi, A.; Nomura, S. On the effective thermal conductivity of carbon nanotube reinforced polymer composites. Compos. Sci. Technol. 2006, 66, 1703–1712.

    Article  CAS  Google Scholar 

  63. Liu, C. H.; Fan, S. S. Effects of chemical modifications on the thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 2005, 86, 123106.

    Article  CAS  Google Scholar 

  64. Clancy, T. C.; Gates, T. S. Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites. Polymer 2006, 47, 5990–5996.

    Article  CAS  Google Scholar 

  65. Foygel, M.; Morris, R. D.; Anez, D.; French, S.; Sobolev, V. L. Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Phys. Rev. B 2005, 77, 104201.

    Article  CAS  Google Scholar 

  66. Zhong, H. L.; Lukes, J. R. Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B 2006, 74, 125403.

    Article  CAS  Google Scholar 

  67. Kumar, S.; Alam, M. A.; Murthy, J. Y. Effect of percolation on thermal transport in nanotube composites. Appl. Phys. Lett. 2007, 90, 104105.

    Article  CAS  Google Scholar 

  68. Volkov, A. N.; Zhigilei, L. V. Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials. Phys. Rev. Lett. 2010, 104, 215902.

    Article  CAS  Google Scholar 

  69. Barnett, C. J.; Evans, C.; McCormack, J. E.; Gowenlock, C. E.; Dunstan, P.; Adams, W.; Orbaek White, A.; Barron, A. R. Experimental measurement of angular and overlap dependence of conduction between carbon nanotubes of identical chirality and diameter. Nano Lett. 2019, 19, 4861–4865.

    Article  CAS  Google Scholar 

  70. Park, C.; Ounaies, Z.; Watson, K. A.; Crooks, R. E.; Smith, J. Jr.; Lowther, S. E.; Connell, J. W.; Siochi, E. J.; Harrison, J. S.; Clair, T. L. S. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 2002, 364, 303–308.

    Article  CAS  Google Scholar 

  71. Qian, D.; Dickey, E. C.; Andrews, R.; Rantell, T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 2000, 76, 2868–2870.

    Article  CAS  Google Scholar 

  72. Andrews, R.; Jacques, D.; Minot, M.; Rantell, T. Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Eng. 2002, 287, 395–403.

    Article  CAS  Google Scholar 

  73. Gong, X. Y.; Liu, J.; Baskaran, S.; Voise, R. D.; Young, J. S. Surfactant-assisted processing of carbon nanotube/polymer composites. Chem. Mater. 2000, 72, 1049–1052.

    Article  CAS  Google Scholar 

  74. Paredes, J. I.; Burghard, M. Dispersions of individual single-walled carbon nanotubes of high length. Langmuir 2004, 20, 5149–5152.

    Article  CAS  Google Scholar 

  75. Xie, H. Q.; Chen, L. F. Adjustable thermal conductivity in carbon nanotube nanofluids. Phys. Lett. A 2009, 373, 1861–1864.

    Article  CAS  Google Scholar 

  76. Wang, S. R.; Liang, R.; Wang, B.; Zhang, C. Dispersion and thermal conductivity of carbon nanotube composites. Carbon 2009, 47, 53–57.

    Article  CAS  Google Scholar 

  77. Glory, J.; Bonetti, M.; Helezen, M.; Mayne-L’Hermite, M.; Reynaud, C. Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes. J. Appl. Phys. 2008, 103, 094309.

    Article  CAS  Google Scholar 

  78. Lou, X.; Detrembleur, C.; Pagnoulle, C.; Jérôme, R.; Bocharova, V.; Kiriy, A.; Stamm, M. Surface modification of multiwalled carbon nanotubes by poly(2-vinylpyridine): Dispersion, selective deposition, and decoration of the nanotubes. Adv. Mater. 2004, 16, 2123–2127.

    Article  CAS  Google Scholar 

  79. Preston, C.; Song, D.; Dai, J. Q.; Tsinas, Z.; Bavier, J.; Cumings, J.; Ballarotto, V.; Hu, L. B. Scalable nanomanufacturing of surfactant-free carbon nanotube inks for spray coatings with high conductivity. Nano Res. 2015, 8, 2242–2250.

    Article  CAS  Google Scholar 

  80. Špitalský, Z.; Matějka, L.; Šlouf, M.; Konyushenko, E. N.; Kovářová, J.; Zemek, J.; Kotek, J. Modification of carbon nanotubes and its effect on properties of carbon nanotube/epoxy nanocomposites. Polym. Compos. 2009, 30, 1378–1387.

    Article  CAS  Google Scholar 

  81. Gulotty, R.; Castellino, M.; Jagdale, P.; Tagliaferro, A.; Balandin, A. A. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano 2013, 7, 5114–5121.

    Article  CAS  Google Scholar 

  82. Huang, J.; Gao, M.; Pan, T. S.; Zhang, Y.; Lin, Y. Effective thermal conductivity of epoxy matrix filled with poly(ethyleneimine) functionalized carbon nanotubes. Compos. Sci. Technol. 2014, 95, 16–20.

    Article  CAS  Google Scholar 

  83. Hong, W. T.; Tai, N. H. Investigations on the thermal conductivity of composites reinforced with carbon nanotubes. Diam. Relat. Mater. 2008, 7 7, 1577–1581.

    Article  CAS  Google Scholar 

  84. Park, S. H.; Jin, S. H.; Jun, G. H.; Jeon, S.; Hong, S. H. Enhanced electrical properties in carbon nanotube/poly (3-hexylthiophene) nanocomposites formed through non-covalent functionalization. Nano Res. 2011, 4, 1129–1135.

    Article  CAS  Google Scholar 

  85. Assali, M.; Leal, M. P.; Fernández, I.; Romero-Gomez, P.; Baati, R.; Khiar, N. Improved non-covalent biofunctionalization of multi-walled carbon nanotubes using carbohydrate amphiphiles with a butterfly-like polyaromatic tail. Nano Res. 2010, 3, 764–778.

    Article  CAS  Google Scholar 

  86. Hu, Y. Z.; Shen, J. F.; Li, N.; Ma, H. W.; Shi, M.; Yan, B.; Huang, W. S.; Wang, W. B.; Ye, M. X. Comparison of the thermal properties between composites reinforced by raw and amino-functionalized carbon materials. Compos. Sci. Technol. 2010, 70, 2176–2182.

    Article  CAS  Google Scholar 

  87. Yang, K.; Gu, M. Y.; Guo, Y. P.; Pan, X. F.; Mu, G. H. Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 2009, 47, 1723–1737.

    Article  CAS  Google Scholar 

  88. Bryning, M. B.; Milkie, D. E.; Islam, M. F.; Kikkawa, J. M.; Yodh, A. G. Thermal conductivity and interfacial resistance in singlewall carbon nanotube epoxy composites. Appl. Phys. Lett. 2005, 87, 161909.

    Article  CAS  Google Scholar 

  89. Huang, H.; Liu, C. H.; Wu, Y.; Fan, S. Aligned carbon nanotube composite films for thermal management. Adv. Mater. 2005, 17, 1652–1656.

    Article  CAS  Google Scholar 

  90. Marconnet, A. M.; Yamamoto, N.; Panzer, M. A.; Wardle, B. L.; Goodson, K. E. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano 2011, 5, 4818–4825.

    Article  CAS  Google Scholar 

  91. Jiang, Q.; Wang, X.; Zhu, Y. T.; Hui, D.; Qiu, Y. P. Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Compos. B Eng. 2014, 56, 408–412.

    Article  CAS  Google Scholar 

  92. Kim, Y. A.; Hayashi, T.; Endo, M.; Gotoh, Y.; Wada, N.; Seiyama, J. Fabrication of aligned carbon nanotube-filled rubber composite. Scr. Mater. 2006, 54, 31–35.

    Article  CAS  Google Scholar 

  93. Gonnet, P.; Liang, Z. Y.; Choi, E. S.; Kadambala, R. S.; Zhang, C.; Brooks, J. S.; Wang, B.; Kramer, L. Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites. Curr. Appl. Phys. 2006, 6, 119–122.

    Article  Google Scholar 

  94. Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283, 512–514.

    Article  CAS  Google Scholar 

  95. Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306, 1358–1361.

    Article  CAS  Google Scholar 

  96. Li, Y. L.; Kinloch, I. A.; Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 2004, 304, 276–278.

    Article  CAS  Google Scholar 

  97. Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362–1364.

    Article  CAS  Google Scholar 

  98. Liu, P.; Wei, Y.; Liu, L.; Jiang, K. L.; Fan, S. S. Formation of freestanding carbon nanotube array on super-aligned carbon nanotube film and its field emission properties. Nano Res. 2012, 5, 421–426.

    Article  CAS  Google Scholar 

  99. Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegal, M. P.; Provencio, P. N. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998, 282, 1105–1107.

    Article  CAS  Google Scholar 

  100. Cola, B. A.; Amama, P. B.; Xu, X. F.; Fisher, T. S. Effects of growth temperature on carbon nanotube array thermal interfaces. J. Heat Transfer 2008, 130, 114503.

    Article  CAS  Google Scholar 

  101. Zhou, W. W.; Zhan, S. T.; Ding, L.; Liu, J. General rules for selective growth of enriched semiconducting single walled carbon nanotubes with water vapor as in situ etchant. J. Am. Chem. Soc. 2012, 134, 14019–14026.

    Article  CAS  Google Scholar 

  102. Bauer, M. L.; Pham, Q. N.; Saltonstall, C. B.; Norris, P. M. Thermal conductivity of vertically aligned carbon nanotube arrays: Growth conditions and tube inhomogeneity. Appl. Phys. Lett. 2014, 105, 151909.

    Article  CAS  Google Scholar 

  103. Eres, G.; Rouleau, C. M.; Puretzky, A. A.; Geohegan, D. B.; Wang, H. Cooperative behavior in the evolution of alignment and structure in vertically aligned carbon-nanotube arrays grown using chemical vapor deposition. Phys. Rev. Appl. 2018, 70, 024010.

    Article  Google Scholar 

  104. Jiang, K. L.; Li, Q. Q.; Fan, S. S. Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.

    Article  CAS  Google Scholar 

  105. Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154–1161.

    Article  CAS  Google Scholar 

  106. Liu, K.; Sun, Y. H.; Chen, L.; Feng, C.; Feng, X. F.; Jiang, K. L.; Zhao, Y. G.; Fan, S. S. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700–705.

    Article  CAS  Google Scholar 

  107. Zhao, Y.; Chu, R. S.; Grigoropoulos, C. P.; Dubon, O. D.; Majumdar, A. Array volume fraction-dependent thermal transport properties of vertically aligned carbon nanotube arrays. J. Heat Transfer 2016, 138, 092401.

    Article  CAS  Google Scholar 

  108. Lin, W.; Moon, K. S.; Zhang, S. J.; Ding, Y.; Shang, J. T.; Chen, M. X.; Wong, C. P. Microwave makes carbon nanotubes less defective. ACS Nano 2010, 4, 1716–1722.

    Article  CAS  Google Scholar 

  109. Zhao, B.; Futaba, D. N.; Yasuda, S.; Akoshima, M.; Yamada, T.; Hata, K. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts. ACS Nano 2009, 3, 108–114.

    Article  CAS  Google Scholar 

  110. Chen, G. H.; Seki, Y.; Kimura, H.; Sakurai, S.; Yumura, M.; Hata, K.; Futaba, D. N. Diameter control of single-walled carbon nanotube forests from 1.3-3.0 nm by arc plasma deposition. Sci. Rep. 2014, 4, 3804.

    Article  CAS  Google Scholar 

  111. Wang, X.; Krommenhoek, P. J.; Bradford, P. D.; Gong, B.; Tracy, J. B.; Parsons, G. N.; Luo, T. J. M.; Zhu, Y. T. Coating alumina on catalytic iron oxide nanoparticles for synthesizing vertically aligned carbon nanotube arrays. ACS Appl. Mater. Interfaces 2011, 3, 4180–4184.

    Article  CAS  Google Scholar 

  112. Xiang, R.; Einarsson, E.; Murakami, Y.; Shiomi, J.; Chiashi, S.; Tang, Z. K.; Maruyama, S. Diameter modulation of vertically aligned single-walled carbon nanotubes. ACS Nano 2012, 6, 7472–7479.

    Article  CAS  Google Scholar 

  113. Cui, K. H.; Kumamoto, A.; Xiang, R.; An, H.; Wang, B.; Inoue, T.; Chiashi, S.; Ikuhara, Y.; Maruyama, S. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts. Nanoscale 2016, 8, 1608–1617.

    Article  CAS  Google Scholar 

  114. Zhong, G. F.; Warner, J. H.; Fouquet, M.; Robertson, A. W.; Chen, B. G.; Robertson, J. Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design. ACS Nano 2012, 6, 2893–2903.

    Article  CAS  Google Scholar 

  115. Wu, B.; Geng, D. C.; Guo, Y. L.; Huang, L. P.; Chen, J. Y.; Xue, Y. Z.; Yu, G.; Liu, Y. Q.; Kajiura, H.; Li, Y. M. Ultrahigh density modulation of aligned single-walled carbon nanotube arrays. Nano Res 2011, 4, 931.

    Article  CAS  Google Scholar 

  116. Gong, Q. M.; Li, Z.; Bai, X. D.; Li, D.; Zhao, Y.; Liang, J. Thermal properties of aligned carbon nanotube/carbon nanocomposites. Mater. Sci. Eng. A 2004, 384, 209–214.

    Article  CAS  Google Scholar 

  117. Silvestri, C.; Riccio, M.; Poelma, R. H.; Jovic, A.; Morana, B.; Vollebregt, S.; Irace, A.; Zhang, G. Q.; Sarro, P. M. Effects of conformal nanoscale coatings on thermal performance of vertically aligned carbon nanotubes. Small 2018, 74, 1800614.

    Article  CAS  Google Scholar 

  118. Li, H. J.; Liu, C. H.; Fan, S. S. Catalyzed filling of carbon nanotube array with graphite and the thermal properties of the composites. J. Phys. Chem. C 2008, 112, 5840–5842.

    Article  CAS  Google Scholar 

  119. Jing, L.; Samani, M. K.; Liu, B.; Li, H. L.; Tay, R. Y.; Tsang, S. H.; Cometto, O.; Nylander, A.; Liu, J.; Teo, E. H. T. et al. Thermal conductivity enhancement of coaxial carbon@boron nitride nanotube arrays. ACS Appl. Mater. Interfaces 2017, 9, 14555–14560.

    Article  CAS  Google Scholar 

  120. In, J. B.; Lee, D.; Fornasiero, F.; Noy, A.; Grigoropoulos, C. P. Laser-assisted simultaneous transfer and patterning of vertically aligned carbon nanotube arrays on polymer substrates for flexible devices. ACS Nano 2012, 6, 7858–7866.

    Article  CAS  Google Scholar 

  121. Mäklin, J.; Halonen, N.; Pitkänen, O.; Tóth, G.; Kordás, K. Solder transfer of carbon nanotube microfin coolers to ceramic chips. Appl. Therm. Eng. 2014, 65, 539–543.

    Article  CAS  Google Scholar 

  122. Wei, H. M.; Wei, Y.; Lin, X. Y.; Liu, P.; Fan, S. S.; Jiang, K. L. Ice-assisted transfer of carbon nanotube arrays. Nano Lett. 2015, 15, 1843–1848.

    Article  CAS  Google Scholar 

  123. Chai, Y.; Gong, J. F.; Zhang, K.; Chan, P. C. H.; Yuen, M. M. F. Flexible transfer of aligned carbon nanotube films for integration at lower temperature. Nanotechnology 2007, 18, 355709.

    Article  CAS  Google Scholar 

  124. Wang, M.; Li, T. T.; Yao, Y. G.; Lu, H. F.; Li, Q.; Chen, M. H.; Li, Q. W. Wafer-scale transfer of vertically aligned carbon nanotube arrays. J. Am. Chem. Soc. 2014, 136, 18156–18162.

    Article  CAS  Google Scholar 

  125. Cola, B. A.; Xu, X. F.; Fisher, T. S. Increased real contact in thermal interfaces: A carbon nanotube/foil material. Appl. Phys. Lett. 2007, 90, 093513.

    Article  CAS  Google Scholar 

  126. Wang, D.; Song, P. C.; Liu, C. H.; Wu, W.; Fan, S. S. Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 2008, 19, 075609.

    Article  CAS  Google Scholar 

  127. Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309, 1215–1219.

    Article  CAS  Google Scholar 

  128. Fischer, J. E.; Zhou, W.; Vavro, J.; Llaguno, M. C.; Guthy, C.; Haggenmueller, R.; Casavant, M. J.; Walters, D. E.; Smalley, R. E. Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties. J. Appl. Phys. 2003, 93, 2157–2163.

    Article  CAS  Google Scholar 

  129. He, X. W.; Gao, W. L.; Xie, L. J.; Li, B.; Zhang, Q.; Lei, S. D.; Robinson, J. M.; Hároz, E. H.; Doorn, S. K.; Wang, W. P. et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat. Nanotechnol. 2016, 77, 633–638.

    Article  CAS  Google Scholar 

  130. Smith, B. W.; Benes, Z.; Luzzi, D. E.; Fischer, J. E.; Walters, D. A.; Casavant, M. J.; Schmidt, J.; Smalley, R. E. Structural anisotropy of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 2000, 77, 663–665.

    Article  CAS  Google Scholar 

  131. Jin, R.; Zhou, Z. X.; Mandrus, D.; Ivanov, I. N.; Eres, G.; Howe, J. Y.; Puretzky, A. A.; Geohegan, D. B. The effect of annealing on the electrical and thermal transport properties of macroscopic bundles of long multi-wall carbon nanotubes. Phys. B Condens. Matter 2007, 388, 326–330.

    Article  CAS  Google Scholar 

  132. Zhu, H. W.; Xu, C. L.; Wu, D. H.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Direct synthesis of long single-walled carbon nanotube strands. Science 2002, 296, 884–886.

    Article  CAS  Google Scholar 

  133. Ericson, L. M.; Fan, H.; Peng, H. Q.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y. H.; Booker, R.; Vavro, J.; Guthy, C. et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004, 305, 1447–1450.

    Article  CAS  Google Scholar 

  134. Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; ter Waarbeek, R. F.; de Jong, J. J.; Hoogerwerf, R. E. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 2013, 339, 182–186.

    Article  CAS  Google Scholar 

  135. Zhang, X.; Jiang, K.; Feng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T.; Li, Q.; Fan, S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505–1510.

    Article  CAS  Google Scholar 

  136. Wei, H. M.; Wei, Y.; Wu, Y.; Liu, L.; Fan, S. S.; Jiang, K. L. High-strength composite yarns derived from oxygen plasma modified super-aligned carbon nanotube arrays. Nano Res. 2013, 6, 208–215.

    Article  CAS  Google Scholar 

  137. Liu, P.; Fan, Z.; Mikhalchan, A.; Tran, T. Q.; Jewell, D.; Duong, H. M.; Marconnet, A. M. Continuous carbon nanotube-based fibers and films for applications requiring enhanced heat dissipation. ACS Appl. Mater. Interfaces 2016, 8, 17461–17471.

    Article  CAS  Google Scholar 

  138. Hu, X. J.; Padilla, A. A.; Xu, J.; Fisher, T. S.; Goodson, K. E. 3-omega measurements of vertically oriented carbon nanotubes on silicon. J. Heat Transfer 2006, 7128, 1109–1113.

    Article  CAS  Google Scholar 

  139. Ping, L. Q.; Hou, P. X.; Liu, C.; Li, J. C.; Zhao, Y.; Zhang, F.; Ma, C. Q.; Tai, K. P.; Cong, H. T.; Cheng, H. M. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance. Nanoscale 2017, 9, 8213–8219.

    Article  CAS  Google Scholar 

  140. Jakubinek, M. B.; White, M. A.; Li, G.; Jayasinghe, C.; Cho, W.; Schulz, M. J.; Shanov, V. Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays. Carbon 2010, 48, 3947–3952.

    Article  CAS  Google Scholar 

  141. Pöhls, J. H.; Johnson, M. B.; White, M. A.; Malik, R.; Ruff, B.; Jayasinghe, C.; Schulz, M. J.; Shanov, V. Physical properties of carbon nanotube sheets drawn from nanotube arrays. Carbon 2012, 50, 4175–4183.

    Article  CAS  Google Scholar 

  142. Aliev, A. E.; Guthy, C.; Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Fischer, J. E.; Baughman, R. H. Thermal transport in MWCNT sheets and yarns. Carbon 2007, 45, 2880–2888.

    Article  CAS  Google Scholar 

  143. Inoue, Y.; Suzuki, Y.; Minami, Y.; Muramatsu, J.; Shimamura, Y.; Suzuki, K.; Ghemes, A.; Okada, M.; Sakakibara, S.; Mimura, H. et al. Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs. Carbon 2011, 49, 2437–2443.

    Article  CAS  Google Scholar 

  144. Yamaguchi, S.; Tsunekawa, I.; Komatsu, N.; Gao, W. L.; Shiga, T.; Kodama, T.; Kono, J.; Shiomi, J. One-directional thermal transport in densely aligned single-wall carbon nanotube films. Appl. Phys. Lett. 2019, 115, 223104.

    Article  CAS  Google Scholar 

  145. Gspann, T. S.; Juckes, S. M.; Niven, J. F.; Johnson, M. B.; Elliott, J. A.; White, M. A.; Windle, A. H. High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology. Carbon 2017, 114, 160–168.

    Article  CAS  Google Scholar 

  146. Jakubinek, M. B.; Johnson, M. B.; White, M. A.; Jayasinghe, C.; Li, G.; Cho, W.; Schulz, M. J.; Shanov, V. Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns. Carbon 2012, 50, 244–248.

    Article  CAS  Google Scholar 

  147. Mayhew, E.; Prakash, V. Thermal conductivity of high performance carbon nanotube yarn-like fibers. J. Appl. Phys. 2014, 115, 174306.

    Article  CAS  Google Scholar 

  148. Niven, J. F.; Johnson, M. B.; Juckes, S. M.; White, M. A.; Alvarez, N. T.; Shanov, V. Influence of annealing on thermal and electrical properties of carbon nanotube yarns. Carbon 2016, 99, 485–490.

    Article  CAS  Google Scholar 

  149. Borca-Tasciuc, T.; Vafaei, S.; Borca-Tasciuc, D. A.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays. J. Appl. Phys. 2005, 98, 054309.

    Article  CAS  Google Scholar 

  150. Wang, Z. L.; Li, Q.; Tang, D. W. Experimental reconstruction of thermal parameters in CNT array multilayer structure. Int. J. Thermophys. 2011, 32, 1013–1024.

    Article  CAS  Google Scholar 

  151. Wang, H. F.; Chu, W. G.; Chen, G. M. A brief review on measuring methods of thermal conductivity of organic and hybrid thermoelectric materials. Adv. Electron. Mater. 2019, 5, 1900167.

    Article  CAS  Google Scholar 

  152. Kumanek, B.; Janas, D. Thermal conductivity of carbon nanotube networks: A review. J. Mater. Sci. 2019, 54, 7397–7427.

    Article  CAS  Google Scholar 

  153. Yu, C.; Shi, L.; Yao, Z.; Li, D. Y.; Majumdar, A. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 2005, 5, 1842–1846.

    Article  CAS  Google Scholar 

  154. Aliev, A. E.; Lima, M. H.; Silverman, E. M.; Baughman, R. H. Thermal conductivity of multi-walled carbon nanotube sheets: Radiation losses and quenching of phonon modes. Nanotechnology 2009, 27, 035709.

    Google Scholar 

  155. Panzer, M. A.; Duong, H. M.; Okawa, J.; Shiomi, J.; Wardle, B. L.; Maruyama, S.; Goodson, K. E. Temperature-dependent phonon conduction and nanotube engagement in metalized single wall carbon nanotube films. Nano Lett. 2010, 70, 2395–2400.

    Article  CAS  Google Scholar 

  156. Jiang, P. Q.; Qian, X.; Gu, X. K.; Yang, R. G. Probing anisotropic thermal conductivity of transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se) using time-domain thermoreflectance. Adv. Mater. 2017, 29, 1701068.

    Article  CAS  Google Scholar 

  157. Cahill, D. G.; Ford, W. K.; Goodson, K. E.; Mahan, G. D.; Majumdar, A.; Maris, H. J.; Merlin, R.; Phillpot, S. R. Nanoscale thermal transport. J. Appl. Phys. 2003, 93, 793–818.

    Article  CAS  Google Scholar 

  158. Kaur, S.; Raravikar, N.; Helms, B. A.; Prasher, R.; Ogletree, D. F. Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nat. Commun. 2014, 5, 3082.

    Article  CAS  Google Scholar 

  159. Panzer, M. A.; Zhang, G.; Mann, D.; Hu, X.; Pop, E.; Dai, H.; Goodson, K. E. Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J. Heat Transfer 2008, 130, 052401.

    Article  CAS  Google Scholar 

  160. Qiu, L.; Guo, P.; Kong, Q. Y.; Tan, C. W.; Liang, K.; Wei, J.; Tey, J. N.; Feng, Y. H.; Zhang, X. X.; Tay, B. K. Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials. Carbon 2019, 145, 725–733.

    Article  CAS  Google Scholar 

  161. Ding, L.; Zhou, W. W.; McNicholas, T. P.; Wang, J. Y.; Chu, H. B.; Li, Y.; Liu, J. Direct observation of the strong interaction between carbon nanotubes and quartz substrate. Nano Res. 2009, 2, 903.

    Article  CAS  Google Scholar 

  162. Hodson, S. L.; Bhuvana, T.; Cola, B. A.; Xu, X. F.; Kulkarni, G. U.; Fisher, T. S. Palladium thiolate bonding of carbon nanotube thermal interfaces. J. Electron. Packag. 2011, 133, 020907.

    Article  CAS  Google Scholar 

  163. Son, Y.; Pal, S. K.; Borca-Tasciuc, T.; Ajayan, P. M.; Siegel, R. W. Thermal resistance of the native interface between vertically aligned multiwalled carbon nanotube arrays and their SiO2/Si substrate. J. Appl. Phys. 2008, 103, 024911.

    Article  CAS  Google Scholar 

  164. Chang, C. W.; Okawa, D.; Majumdar, A.; Zettl, A. Solid-state thermal rectifier. Science 2006, 314, 1121–1124.

    Article  CAS  Google Scholar 

  165. Tong, T.; Zhao, Y.; Delzeit, L.; Kashani, A.; Meyyappan, M.; Majumdar, A. Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials. IEEE Trans. Compon. Pack. Technol. 2007, 30, 92–100.

    Article  CAS  Google Scholar 

  166. Qiu, L.; Scheider, K.; Radwan, S. A.; Larkin, L. S.; Saltonstall, C. B.; Feng, Y. H.; Zhang, X. X.; Norris, P. M. Thermal transport barrier in carbon nanotube array nano-thermal interface materials. Carbon 2017, 120, 128–136.

    Article  CAS  Google Scholar 

  167. Xu, J.; Fisher, T. S. Enhancement of thermal interface materials with carbon nanotube arrays. Int. J. Heat Mass Transfer 2006, 49, 1658–1666.

    Article  CAS  Google Scholar 

  168. Cross, R.; Cola, B. A.; Fisher, T.; Xu, X. F.; Gall, K.; Graham, S. A metallization and bonding approach for high performance carbon nanotube thermal interface materials. Nanotechnology 2010, 27, 445705.

    Article  CAS  Google Scholar 

  169. Xu, Y.; Zhang, Y.; Suhir, E.; Wang, X. Thermal properties of carbon nanotube array used for integrated circuit cooling. J. Appl. Phys. 2006, 100, 074302.

    Article  CAS  Google Scholar 

  170. Xu, J.; Fisher, T. S. Enhanced thermal contact conductance using carbon nanotube array interfaces. IEEE Trans. Compon. Pack. Technol. 2006, 29, 261–267.

    Article  CAS  Google Scholar 

  171. Qiu, L.; Wang, X. T.; Su, G. P.; Tang, D. W.; Zheng, X. H.; Zhu, J.; Wang, Z. G.; Norris, P. M.; Bradford, P. D.; Zhu, Y. T. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film. Sci. Rep. 2016, 6, 21014.

    Article  CAS  Google Scholar 

  172. Duan, Z.; Liu, D. Y.; Zhang, G.; Li, Q. W.; Liu, C. H.; Fan, S. S. Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems. Nanoscale 2017, 9, 3133–3139.

    Article  CAS  Google Scholar 

  173. Li, Q. W.; Liu, C. H.; Fan, S. S. Thermal boundary resistances of carbon nanotubes in contact with metals and polymers. Nano Lett. 2009, 9, 3805–3809.

    Article  CAS  Google Scholar 

  174. Zhang, G.; Liu, C. H.; Fan, S. S. Temperature dependence of thermal boundary resistances between multiwalled carbon nanotubes and some typical counterpart materials. ACS Nano 2012, 6, 3057–3062.

    Article  CAS  Google Scholar 

  175. Swartz, E. T.; Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 1989, 61, 605–668.

    Article  Google Scholar 

  176. Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147–169.

    Article  CAS  Google Scholar 

  177. Ong, Z. Y.; Pop, E. Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2. Phys. Rev. B 2010, 81, 155408.

    Article  CAS  Google Scholar 

  178. Stoner, R. J.; Maris, H. J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Phys. Rev. B 1993, 48, 16373–16387.

    Article  CAS  Google Scholar 

  179. Hu, M.; Keblinski, P.; Wang, J. S.; Raravikar, N. Interfacial thermal conductance between silicon and a vertical carbon nanotube. J. Appl. Phys. 2008, 104, 083503.

    Article  CAS  Google Scholar 

  180. Diao, J. K.; Srivastava, D.; Menon, M. Molecular dynamics simulations of carbon nanotube/silicon interfacial thermal conductance. J. Chem. Phys. 2008, 128, 164708.

    Article  CAS  Google Scholar 

  181. Ong, Z. Y.; Pop, E. Frequency and polarization dependence of thermal coupling between carbon nanotubes and SiO2. J. Appl. Phys. 2010, 108, 103502.

    Article  CAS  Google Scholar 

  182. Liao, A.; Alizadegan, R.; Ong, Z. Y.; Dutta, S.; Xiong, F.; Hsia, K. J.; Pop, E. Thermal dissipation and variability in electrical breakdown of carbon nanotube devices. Phys. Rev. B 2010, 82, 205406.

    Article  CAS  Google Scholar 

  183. Dames, C. Solid-state thermal rectification with existing bulk materials. J. Heat Transfer 2009, 131, 061301.

    Article  CAS  Google Scholar 

  184. Tian, H.; Xie, D.; Yang, Y.; Ren, T. L.; Zhang, G.; Wang, Y. F.; Zhou, C. J.; Peng, P. G.; Wang, L. G.; Liu, L. T. A novel solid-state thermal rectifier based on reduced graphene oxide. Sci. Rep. 2012, 2, 523.

    Article  CAS  Google Scholar 

  185. Yang, N.; Zhang, G.; Li, B. W. Carbon nanocone: A promising thermal rectifier. Appl. Phys. Lett. 2008, 93, 243111.

    Article  CAS  Google Scholar 

  186. Pal, S.; Puri, I. K. Thermal rectification in a polymer-functionalized single-wall carbon nanotube. Nanotechnology 2014, 25, 345401.

    Article  CAS  Google Scholar 

  187. Alaghemandi, M.; Leroy, F.; Müller-Plathe, F.; Böhm, M. C. Thermal rectification in nanosized model systems: A molecular dynamics approach. Phys. Rev. B 2010, 81, 125410.

    Article  CAS  Google Scholar 

  188. Wu, G.; Li, B. W. Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations. Phys. Rev. B 2007, 76, 085424.

    Article  CAS  Google Scholar 

  189. Wen, M. Y.; Yeh, C. H. Forced convective performance of perforated circular pin-fin heat sinks. Heat Mass Transfer 2017, 53, 1713–1723.

    Article  CAS  Google Scholar 

  190. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461.

    Article  CAS  Google Scholar 

  191. Ma, R. J.; Zhang, Z. Y.; Tong, K.; Huber, D.; Kornbluh, R.; Ju, Y. S.; Pei, Q. B. Highly efficient electrocaloric cooling with electrostatic actuation. Science 2017, 357, 1130–1134.

    Article  CAS  Google Scholar 

  192. Mizuno, K.; Ishii, J.; Kishida, H.; Hayamizu, Y.; Yasuda, S.; Futaba, D. N.; Yumura, M.; Hata, K. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci.USA 2009, 106, 6044–6047.

    Article  CAS  Google Scholar 

  193. Qi, X.; Xu, H.; Wang, X. Q.; Ma, W. G.; Qiu, C.; An, M.; Zhang, G.; Wang, F.; Zhang, X.; Bermak, A. Effective surface emissivity and heat dissipation among integrated bamboo-like super-black vertical carbon nanotube array electrodes in silicon via holes. Carbon 2020, 158, 846–856.

    Article  CAS  Google Scholar 

  194. Taft, E. A.; Philipp, H. R. Optical properties of graphite. Phys. Rev. 1965, 138, A197–A202.

    Article  Google Scholar 

  195. Yang, Z. P.; Ci, L. J.; Bur, J. A.; Lin, S. Y.; Ajayan, P. M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 2008, 8, 446–451.

    Article  CAS  Google Scholar 

  196. Zhang, G.; Jiang, S. H.; Zhang, H.; Yao, W.; Liu, C. H. Excellent heat dissipation properties of the super-aligned carbon nanotube films. RSC Adv. 2016, 6, 61686–61694.

    Article  CAS  Google Scholar 

  197. Suryawanshi, C. N.; Lin, C. T. Radiative cooling: Lattice quantization and surface emissivity in thin coatings. ACS Appl. Mater. Interfaces 2009, 7, 1334–1338.

    Article  CAS  Google Scholar 

  198. Suryawanshi, C. N.; Kim, T.; Lin, C. T. An instrument for evaluation of performance of heat dissipative coatings. Rev. Sci. Instrum. 2010, 81, 035105.

    Article  CAS  Google Scholar 

  199. Eyassu, T.; Hsiao, T. J.; Henderson, K.; Kim, T.; Lin, C. T. Molecular cooling fan: Factors for optimization of heat dissipation devices and applications. Ind. Eng. Chem. Res. 2014, 53, 19550–19558.

    Article  CAS  Google Scholar 

  200. Hsiao, T. J.; Eyassu, T.; Henderson, K.; Kim, T.; Lin, C. T. Monolayer graphene dispersion and radiative cooling for high power LED. Nanotechnology 2013, 24, 395401.

    Article  CAS  Google Scholar 

  201. Hsu, I. K.; Pettes, M. T.; Aykol, M.; Chang, C. C.; Hung, W. H.; Theiss, J.; Shi, L.; Cronin, S. B. Direct observation of heat dissipation in individual suspended carbon nanotubes using a two-laser technique. J. Appl. Phys. 2011, 110, 044328.

    Article  CAS  Google Scholar 

  202. Incropera, F. P.; Lavine, A. S.; DeWitt, D. P. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: New York, 2011.

    Google Scholar 

  203. Hu, M.; Shenogin, S.; Keblinski, P.; Raravikar, N. Thermal energy exchange between carbon nanotube and air. Appl. Phys. Lett. 2007, 90, 231905.

    Article  CAS  Google Scholar 

  204. Hsu, I. K.; Pettes, M. T.; Aykol, M.; Shi, L.; Cronin, S. B. The effect of gas environment on electrical heating in suspended carbon nanotubes. J. Appl. Phys. 2010, 108, 084307.

    Article  CAS  Google Scholar 

  205. Zhang, G.; Jiang, S. H.; Yao, W.; Liu, C. H. Enhancement of natural convection by carbon nanotube films covered microchannel-surface for passive electronic cooling devices. ACS Appl. Mater. Interfaces 2016, 8, 31202–31211.

    Article  CAS  Google Scholar 

  206. Kordás, K.; Tóth, G.; Moilanen, P.; Kumpumäki, M.; Vähäkangas, J.; Uusimäki, A.; Vajtai, R.; Ajayan, P. M. Chip cooling with integrated carbon nanotube microfin architectures. Appl. Phys. Lett. 2007, 90, 123105.

    Article  CAS  Google Scholar 

  207. Li, M.; Li, C. Z.; Wang, J. M.; Xiao, X. H.; Yue, Y. N. Parallel measurement of conductive and convective thermal transport of micro/nanowires based on Raman mapping. Appl. Phys. Lett. 2015, 106, 253108.

    Article  CAS  Google Scholar 

  208. Silvestri, C.; Riccio, M.; Poelma, R. H.; Morana, B.; Vollebregt, S.; Santagata, F.; Irace, A.; Zhang, G. Q.; Sarro, P. M. Thermal characterization of carbon nanotube foam using MEMS microhotplates and thermographic analysis. Nanoscale 2016, 8, 8266–8275.

    Article  CAS  Google Scholar 

  209. Jiang, S. H.; Liu, C. H.; Fan, S. S. Efficient natural-convective heat transfer properties of carbon nanotube sheets and their roles on the thermal dissipation. ACS Appl. Mater. Interfaces 2014, 6, 3075–3080.

    Article  CAS  Google Scholar 

  210. Jiang, S. H.; Zhang, G.; Xia, D.; Liu, C. H.; Fan, S. S. A heat flux modulator from carbon nanotubes. Nanoscale 2015, 7, 13759–13764.

    Article  CAS  Google Scholar 

  211. Yu, W.; Duan, Z.; Zhang, G.; Liu, C. H.; Fan, S. S. Effect of an auxiliary plate on passive heat dissipation of carbon nanotube-based materials. Nano Lett. 2018, 18, 1770–1776.

    Article  CAS  Google Scholar 

  212. Huang, Z. L.; Gao, M.; Pan, T. S.; Zhang, Y.; Zeng, B.; Liang, W. Z.; Liao, F. Y.; Lin, Y. Microstructure dependence of heat sink constructed by carbon nanotubes for chip cooling. J. Appl. Phys. 2015, 117, 024901.

    Article  CAS  Google Scholar 

  213. Mikhaylov, A. A.; Sladkevich, S.; Medvedev, A. G.; Prikhodchenko, P. V.; Gun, J.; Sakharov, K. A.; Xu, Z. J.; Kulish, V.; Nikolaev, V. A.; Lev, O. Enhanced thermal buffering of phase change materials by the intramicrocapsule sub per mille CNT dopant. ACS Appl. Mater. Interfaces 2020, 72, 16227–16235.

    Article  CAS  Google Scholar 

  214. Cai, Q. J.; Chen, C. L. Design and test of carbon nanotube biwick structure for high-heat-flux phase change heat transfer. J. Heat Transfer 2010, 132, 052403.

    Article  CAS  Google Scholar 

  215. Rojo, G.; Ghanbari, S.; Darabi, J. Fabrication and thermal characterization of composite Cu-CNT micropillars for capillary-driven phase-change cooling devices. Nanoscale Microscale Thermophys. Eng. 2019, 23, 317–333.

    Article  CAS  Google Scholar 

  216. Yu, W.; Liu, C. H.; Fan, S. S. High water-absorbent and phase-change heat dissipation materials based on super-aligned cross-stack CNT films. Adv. Eng. Mater. 2019, 27, 1801216.

    Article  CAS  Google Scholar 

  217. Tan, F. L.; Tso, C. P. Cooling of mobile electronic devices using phase change materials. Appl. Therm. Eng. 2004, 24, 159–169.

    Article  CAS  Google Scholar 

  218. Fok, S. C.; Shen, W.; Tan, F. L. Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. Int. J. Therm. Sci. 2010, 49, 109–117.

    Article  CAS  Google Scholar 

  219. Xu, B. W.; Li, Z. J. Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites. Energy 2014, 72, 371–380.

    Article  CAS  Google Scholar 

  220. Chen, Y. F.; Zhang, Q.; Wen, X. Y.; Yin, H. B.; Liu, J. A novel CNT encapsulated phase change material with enhanced thermal conductivity and photo-thermal conversion performance. Solar Energy Mater. Solar Cells 2018, 184, 82–90.

    Article  CAS  Google Scholar 

  221. Pu, S. R.; Su, J. X.; Li, L. X.; Wang, H. S.; Chen, C. Y.; Hu, X. J. Bioinspired sweating with temperature sensitive hydrogel to passively dissipate heat from high-end wearable electronics. Energy Convers. Manage. 2019, 180, 747–756.

    Article  CAS  Google Scholar 

  222. Wang, C. X.; Hua, L. J.; Yan, H. Z.; Li, B. J.; Tu, Y. D.; Wang, R. Z. A thermal management strategy for electronic devices based on moisture sorption-desorption processes. Joule 2020, 4, 435–447.

    Article  CAS  Google Scholar 

  223. Ranjan, R.; Patel, A.; Garimella, S. V.; Murthy, J. Y. Wicking and thermal characteristics of micropillared structures for use in passive heat spreaders. Int. J. Heat Mass Transfer 2012, 55, 586–596.

    Article  Google Scholar 

  224. Vadakkan, U.; Chrysler, G. M.; Maveety, J.; Tirumala, M. A novel carbon nano tube based wick structure for heat pipes/vapor chambers. In Proceedings of the 23rd Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, USA, 2007, pp 102–104.

  225. Zhou, J. J.; Noca, F.; Gharib, M. Flow conveying and diagnosis with carbon nanotube arrays. Nanotechnology 2006, 17, 4845–4853.

    Article  Google Scholar 

  226. Altman, D. H.; Wasniewski, J. R.; North, M. T.; Kim, S. S.; Fisher, T. S. Development of micro/nano engineered wick-based passive heat spreaders for thermal management of high power electronic devices. In Proceedings of the ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, Portland, USA, 2011, pp 213–220.

  227. Zhang, G.; Xu, Y. T.; Duan, Z.; Li, L.; Liu, C. H.; Yao, W. Enhancement of evaporative heat transfer on carbon nanotube sponges by electric field reinforced wettability. Appl. Surf. Sci. 2018, 454, 262–269.

    Article  CAS  Google Scholar 

  228. Weibel, J. A.; Kim, S. S.; Fisher, T. S.; Garimella, S. V. Carbon nanotube coatings for enhanced capillary-fed boiling from porous microstructures. Nanoscale Microscale Thermophys. Eng. 2012, 16, 1–17.

    Article  CAS  Google Scholar 

  229. Weibel, J. A.; Garimella, S. V.; Murthy, J. Y.; Altman, D. H. Design of integrated nanostructured wicks for high-performance vapor chambers. IEEE Trans. Comp. Pack. Manuf. Technol. 2011, 1, 859–867.

    CAS  Google Scholar 

  230. Zhang, S. J.; Zhao, R.; Liu, J.; Gu, J. J. Investigation on a hydrogel based passive thermal management system for lithium ion batteries. Energy 2014, 68, 854–861.

    Article  CAS  Google Scholar 

  231. Zhao, R.; Zhang, S. J.; Gu, J. J.; Liu, J.; Carkner, S.; Lanoue, E. An experimental study of lithium ion battery thermal management using flexible hydrogel films. J. Power Sources 2014, 255, 29–36.

    Article  CAS  Google Scholar 

  232. Pu, S. R.; Fu, J.; Liao, Y. T.; Ge, L. R.; Zhou, Y. H.; Zhang, S. L.; Zhao, S. L.; Liu, X. W.; Hu, X. J.; Liu, K. et al. Promoting energy efficiency via a self-adaptive evaporative cooling hydrogel. Adv. Mater. 2020, 32, 1907307.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research & Development Program of China (No. 2018YFA0208401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Liu, C. & Fan, S. Advances of CNT-based systems in thermal management. Nano Res. 14, 2471–2490 (2021). https://doi.org/10.1007/s12274-020-3255-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3255-1

Keywords

Navigation