Skip to main content
Log in

Carbon nanodots enhanced performance of Cs0.15FA0.85PbI3 perovskite solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A high-quality hybrid Cs0.15FA0.85PbI3 thin film is deposited through doping of carbon nanodots (CNDs) into perovskite precursor solution. The corresponding inverted planar perovskite solar cells (PSCs) of ITO/PTAA/Cs0.15FA0.85PbI3/PC61BM/BCP/Ag exhibit an improvement in efficiency from 17.36% to 20.06%, which could be attributed to the passivation of the defects at the crystallized perovskite thin film and enhanced perovskite phase uniformity. The results of electron trap density indicate that the addition of CNDs significantly reduces the defects density at the perovskite thin film and the recombination of charge carriers in transport process is minimized. These results demonstrate that low-cost CNDs are effective additives for passivating defects, further reducing charge carrier recombination and improving device efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, J. Y.; Lee, J. W.; Jung, H. S.; Shin, H.; Park, N. G. High-efficiency perovskite solar cells. Chem. Rev. 2020, 120, 7867–7918.

    Article  CAS  Google Scholar 

  2. Luo, D. Y.; Yang, W. Q.; Wang, Z. P.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J. F.; Xu, Z. J. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 2018, 360, 1442–1446.

    Article  CAS  Google Scholar 

  3. Gao, X. X.; Luo, W.; Zhang, Y.; Hu, R. Y.; Zhang, B.; Züttel, A.; Feng, Y. Q.; Nazeeruddin, K. N. Stable and high-efficiency methylammoniumfree perovskite solar cells. Adv. Mater. 2020, 32, 1905502.

    Article  CAS  Google Scholar 

  4. Xu, W. Z.; Zheng, L. Y.; Zhang, X. T.; Cao, Y.; Meng, T. Y.; Wu, D. Z.; Liu, L.; Hu, W. P.; Gong, X. Efficient perovskite solar cells fabricated by Co partially substituted hybrid perovskite. Adv. Energy Mater. 2018, 8, 1703178.

    Article  Google Scholar 

  5. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

    Article  CAS  Google Scholar 

  6. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

    Article  CAS  Google Scholar 

  7. NREL. Best research-cell efficiency chart [Online]. https://www.nrel.gov/pv/cell-efficiency.html. (accessed Sept 22, 2020).

  8. Liu, T.; Luo, Z. H.; Chen, Y. Z.; Yang, T.; Xiao, Y. Q.; Zhang, G. Y.; Ma, R. J.; Lu, X. H.; Zhan, C. L.; Zhang, M. J. et al. A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%. Energy Environ. Sci. 2019, 12, 2529–2536.

    Article  CAS  Google Scholar 

  9. Chen, W.; Pang, G. T.; Zhou, Y. C.; Sun, Y. Z.; Liu, F. Z.; Chen, R.; Chen, S. M.; Djurisic, A. B.; He, Z. B. Stabilizing N-type heterojunctions for NiOx based inverted planar perovskite solar cells with an efficiency of 21.6%. J. Mater. Chem. A 2020, 8, 1865–1874.

    Article  CAS  Google Scholar 

  10. Wang, K.; Liu, X. Y.; Huang, R.; Wu, C. C.; Yang, D.; Hu, X. W.; Jiang, X. F.; Duchamp, J. C.; Dorn, H.; Priya, S. Nonionic Sc3N@C80 dopant for efficient and stable halide perovskite photovoltaics. ACS Energy Lett. 2019, 4, 1852–1861.

    Article  CAS  Google Scholar 

  11. Wang, K.; Zhang, Z.; Liu, C.; Fu, Q.; Xu, W. Z.; Huang, C. W.; Weiss, R. A.; Gong, X. Efficient polymer solar cells by lithium sulfonated polystyrene as a charge transport interfacial layer. ACS Appl. Mater. Interfaces 2017, 9, 5348–5357.

    Article  CAS  Google Scholar 

  12. Chen, H. N.; Wei, Z. H.; He, H. X.; Zheng, X. L.; Wong, K. S.; Yang, S. H. Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%. Adv. Energy Mater. 2016, 6, 1502087.

    Article  Google Scholar 

  13. Bu, T. L.; Wu, L.; Liu, X. P.; Yang, X. K.; Zhou, P.; Yu, X. X.; Qin, T. S.; Shi, J. J.; Wang, S.; Li, S. S. et al. Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700576.

    Article  Google Scholar 

  14. Cao, X. B.; Zhi, L. L.; Jia, Y.; Li, Y. H.; Zhao, K.; Cui, X.; Ci, L. J.; Zhuang, D. M.; Wei, J. Q. A review of the role of solvents in formation of high-quality solution-processed perovskite films. ACS Appl. Mater. Interfaces 2019, 11, 7639–7654.

    Article  CAS  Google Scholar 

  15. Chavan, R. D.; Prochowicz, D.; Tavakoli, M. M.; Yadav, P.; Hong, C. K. Surface treatment of perovskite layer with guanidinium iodide leads to enhanced moisture stability and improved efficiency of perovskite solar cells. Adv. Mater. Interfaces 2020, 7, 2000105.

    Article  CAS  Google Scholar 

  16. Nie, W. Y.; Tsai, H.; Asadpour, R.; Blancon, J. C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525.

    Article  CAS  Google Scholar 

  17. Yan, K. Y.; Long, M. Z.; Zhang, T. K.; Wei, Z. H.; Chen, H. N.; Yang, S. H.; Xu, J. B. Hybrid halide perovskite solar cell precursors: Colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 2015, 137, 4460–4468.

    Article  CAS  Google Scholar 

  18. Xu, W. Z.; He, F.; Zhang, M.; Nie, P. B.; Zhang, S. W.; Zhao, C.; Luo, R. P.; Li, J. Z.; Zhang, X.; Zhao, S. C. et al. Minimizing voltage loss in efficient all-inorganic CsPbI2Br perovskite solar cells through energy level alignment. ACS Energy Lett. 2019, 4, 2491–2499.

    Article  CAS  Google Scholar 

  19. Ansari, F.; Shirzadi, E.; Salavati-Niasari, M.; LaGrange, T.; Nonomura, K.; Yum, J. H.; Sivula, K.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. et al. A passivation mechanism exploiting surface dipoles affords high-performance perovskite solar cells. J. Am. Chem. Soc. 2020, 142, 11428–11433.

    Article  Google Scholar 

  20. Chen, J. Z.; Park, N. G. Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 2019, 31, 1803019.

    Article  CAS  Google Scholar 

  21. Stolterfoht, M.; Caprioglio, P.; Wolff, C. M.; Márquez, J. A.; Nordmann, J.; Zhang, S. S.; Rothhardt, D.; Hörmann, U.; Amir, Y.; Redinger, A. et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 2019, 12, 2778–2788

    Article  CAS  Google Scholar 

  22. Xu, W. Z.; Gao, Y.; Ming, W. J.; He, F.; Li, J. Z.; Zhu, X. H.; Kang, F. Y.; Li, J. Y.; Wei, G. D. Suppressing defects-induced nonradiative recombination for efficient perovskite solar cells through green antisolvent engineering. Adv. Mater. 2020, 32, 2003965.

    Article  CAS  Google Scholar 

  23. Tong, J. H.; Song, Z. N.; Kim, D. H.; Chen, X. H.; Chen, C.; Palmstrom, A. F.; Ndione, P. F.; Reese, M. O.; Dunfield, S. P.; Reid, O. G. et al. Carrier lifetimes of >1 µs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 2019, 364, 475–479.

    Article  CAS  Google Scholar 

  24. Liu, W.; Liu, N. J.; Ji, S. L.; Hua, H. F.; Ma, Y. H.; Hu, R. Y.; Zhang, J.; Chu, L.; Li, X. A.; Huang, W. Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells. Nano-Micro Lett. 2020, 12, 119.

    Article  CAS  Google Scholar 

  25. Li, X. M.; Wang, K. L.; Lgbari, F.; Dong, C.; Yang, W. F.; Ma, C.; Ma, H.; Wang, Z. K.; Liao, L. S. Indium doped CsPbI3 films for inorganic perovskite solar cells with efficiency exceeding 17%. Nano Res. 2020, 13, 2203–2208.

    Article  CAS  Google Scholar 

  26. Wang, L. G.; Zhou, H. P.; Hu, J. N.; Huang, B. L.; Sun, M. Z.; Dong, B. W.; Zheng, G. H. J.; Huang, Y.; Chen, Y. H.; Li, L. et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 2019, 363, 265–270.

    Article  CAS  Google Scholar 

  27. Bai, S.; Da, P. M.; Li, C.; Wang, Z. P.; Yuan, Z. C.; Fu, F.; Kawecki, M.; Liu, X. J.; Sakai, N.; Wang, J. T. W. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019, 571, 245–250.

    Article  CAS  Google Scholar 

  28. Jiang, J. X.; Wang, Q.; Jin, Z. W.; Zhang, X. S.; Lei, J.; Bin, H. J.; Zhang, Z. G.; Li, Y. F.; Liu, S. Z. F. Polymer doping for high-efficiency perovskite solar cells with improved moisture stability. Adv. Energy Mater. 2018, 8, 1701757.

    Article  Google Scholar 

  29. Chiang, C. H.; Wu, C. G. Bulk heterojunction perovskite-PCBM solar cells with high fill factor. Nat. Photonics 2016, 10, 196–200.

    Article  CAS  Google Scholar 

  30. Chen, N. L.; Yi, X. H.; Zhuang, J.; Wei, Y. Z.; Zhang, Y. Y.; Wang, F. Y.; Cao, S. K.; Li, C.; Wang, J. Z. An efficient trap passivator for perovskite solar cells: Poly(propylene glycol) bis(2-aminopropyl ether). Nano-Micro Lett. 2020, 12, 177.

    Article  CAS  Google Scholar 

  31. Li, Z. Q.; Wang, F.; Liu, C. Y.; Gao, F.; Shen, L.; Guo, W. B. Efficient perovskite solar cells enabled by ion-modulated grain boundary passivation with a fill factor exceeding 84%. J. Mater. Chem. A 2019, 7, 22359–22365.

    Article  CAS  Google Scholar 

  32. Zhang, H. J.; Hou, M. H.; Xia, Y. D.; Wei, Q. L.; Wang, Z.; Cheng, Y. C.; Chen, Y. H.; Huang, W. Synergistic effect of anions and cations in additives for highly efficient and stable perovskite solar cells. J. Mater. Chem. A 2018, 6, 9264–9270.

    Article  CAS  Google Scholar 

  33. Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.

    Article  CAS  Google Scholar 

  34. Wang, K.; Zheng, L. Y.; Zhu, T.; Liu, L.; Becker, M. L.; Gong, X. High performance perovskites solar cells by hybrid perovskites co-crystallized with poly(ethylene oxide). Nano Energy 2020, 67, 104229.

    Article  CAS  Google Scholar 

  35. Hadadian, M.; Smått, J. H.; Correa-Baena, J. P. The role of carbon-based materials in enhancing the stability of perovskite solar cells. Energy Environ. Sci. 2020, 13, 1377–1407.

    Article  CAS  Google Scholar 

  36. Hui, W.; Yang, Y. G.; Xu, Q.; Gu, H.; Feng, S. L.; Su, Z. H.; Zhang, M. R.; Wang, J. O.; Li, X. D.; Fang, J. F. et al. Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells. Adv. Mater. 2020, 32, 1906374.

    Article  CAS  Google Scholar 

  37. Yue, G. Q.; Chen, D.; Wang, P.; Zhang, J.; Hu, Z. Y.; Zhu, Y. J. Low-temperature prepared carbon electrodes for hole-conductor-free mesoscopic perovskite solar cells. Electrochim. Acta 2016, 218, 84–90.

    Article  CAS  Google Scholar 

  38. Liu, J. H.; Zhou, Q. S.; Thein, N. K.; Tian, L.; Jia, D. L.; Johansson, E. M. J.; Zhang, X. L. In situ growth of perovskite stacking layers for high-efficiency carbon-based hole conductor free perovskite solar cells. J. Mater. Chem. A 2019, 7, 13777–13786.

    Article  CAS  Google Scholar 

  39. Shastry, T. A.; Hersam, M. C. Carbon nanotubes in thin-film solar cells. Adv. Energy Mater. 2017, 7, 1601205.

    Article  Google Scholar 

  40. Ferrer-Ruiz, A.; Scharl, T.; Haines, P.; Rodríguez-Pérez, L.; Cadranel, A.; Herranz, M. Á.; Guldi, D. M.; Martín, N. Exploring tetrathiafulvalene-carbon nanodot conjugates in charge transfer reactions. Angew. Chem., Int. Ed. 2018, 57, 1001–1005.

    Article  CAS  Google Scholar 

  41. Zhang, M. R.; Su, R. G.; Zhong, J.; Fei, L.; Cai, W.; Guan, Q. W.; Li, W. J.; Li, N.; Chen, Y. S.; Cai, L. L. et al. Red/orange dual-emissive carbon dots for PH sensing and cell imaging. Nano Res. 2019, 12, 815–821.

    Article  CAS  Google Scholar 

  42. Gao, Y.; Wang, H. R.; Ma, Q.; Wu, A. J.; Zhang, W.; Zhang, C. X.; Chen, Z. H.; Zeng, X. X.; Wu, X. W.; Wu, Y. P. Carbon sheet-decorated graphite felt electrode with high catalytic activity for vanadium redox flow batteries. Carbon 2019, 148, 9–15.

    Article  CAS  Google Scholar 

  43. Chen, Z. H.; Gao, Y.; Zhang, C. X.; Zeng, X. X.; Wu, X. W. Surface-wrinkle-modified graphite felt with high effectiveness for vanadium redox flow batteries. Adv. Electron. Mater. 2019, 5, 1900036.

    Article  Google Scholar 

  44. Thote, A.; Jeon, I.; Lee, J. W.; Seo, S.; Lin, H. S.; Yang, Y.; Daiguji, H.; Maruyama, S.; Matsuo, Y. Stable and reproducible 2D/3D formamidinium-lead-iodide perovskite solar cells. ACS Appl. Energy Mater. 2019, 2, 2486–2493.

    Article  CAS  Google Scholar 

  45. Saliba, M.; Matsui, T.; Domanski, K.; Seo, J. Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J. P.; Tress, W. R.; Abate, A.; Hagfeldt, A. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354, 206–209.

    Article  CAS  Google Scholar 

  46. Holzwarth, U.; Gibson, N. The scherrer equation versus the “Debye-Scherrer equation”. Nat. Nanotechnol. 2011, 6, 534.

    Article  CAS  Google Scholar 

  47. Zhao, X. M.; Yao, C.; Liu, T. R.; Hamill, J. C., Jr.; Ngongang Ndjawa, G. O.; Cheng, G. M.; Yao, N.; Meng, H.; Loo, Y. L. Extending the photovoltaic response of perovskite solar cells into the near-infrared with a narrow-bandgap organic semiconductor. Adv. Mater. 2019, 31, 1904494.

    Article  CAS  Google Scholar 

  48. Xu, X. W.; Ma, C. Q.; Xie, Y. M.; Cheng, Y. H.; Tian, Y. M.; Li, M. L.; Ma, Y. H.; Lee, C. S.; Tsang, S. W. Air-processed mixed-cation Cs0.15FA0.85PbI3 planar perovskite solar cells derived from a PbI2-CsI-FAI intermediate complex. J. Mater. Chem. A 2018, 6, 7731–7740.

    Article  CAS  Google Scholar 

  49. Huang, J. H.; Xu, P.; Liu, J.; You, X. Z. Sequential introduction of cations deriving large-grain Csx FA1−x Pbi3 thin film for planar hybrid solar cells: Insight into phase-segregation and thermal-healing behavior. Small 2017, 13, 1603225.

    Article  Google Scholar 

  50. Wang, Y. F.; Wu, J.; Zhang, P.; Liu, D. T.; Zhang, T.; Ji, L.; Gu, X. L.; David Chen, Z.; Li, S. B. Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells. Nano Energy 2017, 39, 616–625.

    Article  CAS  Google Scholar 

  51. Chan, D. S. H.; Phang, J. C. H. Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics. IEEE Trans. Electron Dev. 1987, 34, 286–293.

    Article  Google Scholar 

  52. Han, Q. F.; Bae, S. H.; Sun, P. Y.; Hsieh, Y. T.; Yang, Y.; Rim, Y. S.; Zhao, H. X.; Chen, Q.; Shi, W. Z.; Li, G. et al. Single crystal formamidinium lead iodide (FAPbI3): Insight into the structural, optical, and electrical properties. Adv. Mater. 2016, 28, 2253–2258.

    Article  CAS  Google Scholar 

  53. Bube, R. H. Trap density determination by space-charge-limited currents. J. Appl. Phys. 1962, 33, 1733–1737.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Shenzhen Science and Technology Innovation Committee (No. JCYJ20190809172615277) and China Postdoctoral Science Foundation (No. 2019TQ0163). This project was financially also supported by Shenzhen Municipal Development and Reform Commission, New Energy Technology Engineering Laboratory (No. SDRC [2016]172).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenzhan Xu or Guodan Wei.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Xu, W., He, F. et al. Carbon nanodots enhanced performance of Cs0.15FA0.85PbI3 perovskite solar cells. Nano Res. 14, 2294–2300 (2021). https://doi.org/10.1007/s12274-020-3224-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3224-8

Keywords

Navigation