Skip to main content
Log in

Engineering electrochemical actuators with large bending strain based on 3D-structure titanium carbide MXene composites

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrically responsive electrochemical actuators that contain a polymer electrolyte membrane laminated between two electrodes have attracted great attention due to their potential applications in smart electronics, wearable devices, and soft robotics. However, some challenges such as the achievement of large bending strain under low applied voltage and fast ion diffusion and accumulation still exist to be resolved. The key to the solution lies in the choice of electrode materials and the design of electrode structures. In this study, an engineering electrochemical actuator that presents large bending strain under low applied voltage based on MXene/polystyrene-MXene hybrid electrodes is developed. The developed electrochemical actuator based on the MXene/polystyrene-MXene 3D-structure is found to exhibit large bending strain (ca. 1.18%), broad frequency bandwidth, good durability (90% retention after 10,000 cycles) and considerable Young’s modulus (ca. 246 MPa). The high-performance actuation mainly stems from the excellent properties of MXene and 3D-structure of the electrode. The MXene provides excellent mechanical strength and high electrical conductivity which facilitate strong interaction and rapid electron transfer in electrodes. The 3D architectures formed by polystyrene microspheres generate unimpeded ion pathways for ionic short diffusion and fast injection. This study reveals that the 3D-structure hybrid electrodes play a crucial role in promoting the performance of such electrochemical actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, J.; Mulle, M.; Zhang, Y. B.; Xu, X. Z.; Li, E. Q.; Han, F.; Thoroddsen, S. T.; Lubineau, G. High-ampacity conductive polymer microfibers as fast response wearable heaters and electromechanical actuators. J. Mater. Chem. C 2016, 4, 1238–1249.

    Article  CAS  Google Scholar 

  2. Gural’skiy, I. A.; Quintero, C. M.; Costa, J. S.; Demont, P.; Molnár, G.; Salmon, L.; Shepherd, H. J.; Bousseksou, A. Spin crossover composite materials for electrothermomechanical actuators. J. Mater. Chem. C 2014, 2, 2949–2955.

    Article  Google Scholar 

  3. Ze, Q. J.; Kuang, X.; Wu, S.; Wong, J.; Montgomery, S. M.; Zhang, R. D.; Kovitz, J. M.; Yang, F.; Qi, H. J.; Zhao, R. K. Magnetic shape memory polymers with integrated multifunctional shape manipulation. Adv. Mater. 2020, 32, 1906657.

    Article  CAS  Google Scholar 

  4. Diller, E.; Zhuang, J.; Lum, G. Z.; Edwards, M. R.; Sitti, M. Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming. Appl. Phys. Lett. 2014, 104, 174101.

    Article  Google Scholar 

  5. Priimagi, A.; Barrett, C. J.; Shishido, A. Recent twists in photoactuation and photoalignment control. J. Mater. Chem. C 2014, 2, 7155–7162.

    Article  CAS  Google Scholar 

  6. Yu, L.; Cheng, Z. X.; Dong, Z. J.; Zhang, Y. H.; Yu, H. F. Photomechanical response of polymer-dispersed liquid crystals/graphene oxide nanocomposites. J. Mater. Chem. C 2014, 2, 8501–8506.

    Article  CAS  Google Scholar 

  7. Hua, D. C.; Zhang, X. Q.; Ji, Z. Y.; Yan, C. Y.; Yu, B.; Li, Y. D.; Wang, X. L.; Zhou, F. 3D printing of shape changing composites for constructing flexible paper-based photothermal bilayer actuators. J. Mater. Chem. C 2018, 6, 2123–2131.

    Article  CAS  Google Scholar 

  8. Li, W. W.; Zhao, L. Y.; Dai, Z. H.; Jin, H.; Duan, F.; Liu, J. C.; Zeng, Z. H..; Zhao, J.; Zhang, Z. A temperature-activated nanocomposite metamaterial absorber with a wide tunability. Nano Res. 2018, 11, 3931–3942.

    Article  CAS  Google Scholar 

  9. Oh, J.; Kozlov, M. E.; Carretero-González, J.; Castillo-Martínez, E.; Baughman, R. H. Thermal actuation of graphene oxide nanoribbon mats. Chem. Phys. Lett. 2011, 505, 31–36.

    Article  CAS  Google Scholar 

  10. Maeda, S.; Hara, Y.; Sakai, T.; Yoshida, R.; Hashimoto, S. Self-walking gel. Adv. Mater. 2007, 19, 3480–3484.

    Article  CAS  Google Scholar 

  11. Behl, M.; Lendlein, A. Shape-memory polymers. Mater. Today 2007, 10, 20–28.

    Article  CAS  Google Scholar 

  12. Park, K.; Yoon, M. K.; Lee, S.; Choi, J.; Thubrikar, M. Effects of electrode degradation and solvent evaporation on the performance of ionic-polymer-metal composite sensors. Smart Mater. Struct. 2010, 19, 075002.

    Article  Google Scholar 

  13. Kong, L. R.; Chen, W. Carbon nanotube and graphene-based bioinspired electrochemical actuators. Adv. Mater. 2014, 26, 1025–1043.

    Article  CAS  Google Scholar 

  14. Li, J. Z.; Ma, W. J.; Song, L.; Niu, Z. Q.; Cai, L.; Zeng, Q. S.; Zhang, X. X.; Dong, H. B.; Zhao, D.; Zhou, W. et al. Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett. 2011, 11, 4636–4641.

    Article  CAS  Google Scholar 

  15. Cottinet, P. J.; Souders, C.; Tsai, S. Y.; Liang, R.; Wang, B.; Zhang, C. Electromechanical actuation of buckypaper actuator: Material properties and performance relationships. Phys. Lett. A 2012, 376, 1132–1136.

    Article  CAS  Google Scholar 

  16. Lu, C.; Yang, Y.; Wang, J.; Fu, R. P.; Zhao, X. X.; Zhao, L.; Ming, Y.; Hu, Y.; Lin, H. Z.; Tao, X. M. et al. High-performance graphdiyne-based electrochemical actuators. Nat. Commun. 2018, 9, 752.

    Article  Google Scholar 

  17. Lu, L. H.; Liu, J. H.; Hu, Y.; Zhang, Y. W.; Randriamahazaka, H.; Chen, W. Highly stable air working bimorph actuator based on a graphene nanosheet/carbon nanotube hybrid electrode. Adv. Mater. 2012, 24, 4317–4321.

    Article  CAS  Google Scholar 

  18. Wu, G.; Wu, X. J.; Xu, Y. J.; Cheng, H. Y.; Meng, J. K.; Yu, Q.; Shi, X. Y.; Zhang, K.; Chen, W.; Chen, S. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv. Mater. 2019, 31, 1806492.

    Article  Google Scholar 

  19. Wu, G.; Li, G. H.; Lan, T.; Hu, Y.; Li, Q. W.; Zhang, T.; Chen, W. An interface nanostructured array guided high performance electrochemical actuator. J. Mater. Chem. A 2014, 2, 16836–16841.

    Article  CAS  Google Scholar 

  20. Lu, L. H.; Liu, J. H.; Hu, Y.; Zhang, Y. W.; Chen, W. Graphene-stabilized silver nanoparticle electrochemical electrode for actuator design. Adv. Mater. 2013, 25, 1270–1274.

    Article  CAS  Google Scholar 

  21. Terasawa, N.; Ono, N.; Hayakawa, Y.; Mukai, K.; Koga, T.; Higashi, N.; Asaka, K. Effect of hexafluoropropylene on the performance of poly(vinylidene fluoride) polymer actuators based on single-walled carbon nanotube-ionic liquid gel. Sens. Actuators B Chem. 2011, 160, 161–167.

    Article  CAS  Google Scholar 

  22. Terasawa, N.; Ono, N.; Mukai, K.; Koga, T.; Higashi, N.; Asaka, K. A multi-walled carbon nanotube/polymer actuator that surpasses the performance of a single-walled carbon nanotube/polymer actuator. Carbon 2012, 50, 311–320.

    Article  CAS  Google Scholar 

  23. Liu, Q.; Liu, L. Q.; Xie, K.; Meng, Y. N.; Wu, H. P.; Wang, G. R.; Dai, Z. H.; Wei, Z. X.; Zhang, Z. Synergistic effect of a r-GO/PANI nanocomposite electrode based air working ionic actuator with a large actuation stroke and long-term durability. J. Mater. Chem. A 2015, 3, 8380–8388.

    Article  CAS  Google Scholar 

  24. Wu, G.; Hu, Y.; Zhao, J. J.; Lan, T.; Wang, D. X.; Liu, Y.; Chen, W. Ordered and active nanochannel electrode design for high-performance electrochemical actuator. Small 2016, 12, 4986–4992.

    Article  CAS  Google Scholar 

  25. Wu, G.; Hu, Y.; Liu, Y.; Zhao, J. J.; Chen, X. L.; Whoehling, V.; Plesse, C.; Nguyen, G. T. M.; Vidal, F.; Chen, W. Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator. Nat. Commu.n 2015, 6, 7258.

    Article  CAS  Google Scholar 

  26. Kotal, M.; Kim, J.; Kim, K. J.; Oh, I. K. Sulfur and nitrogen co-doped graphene electrodes for high-performance ionic artificial muscles. Adv. Mater. 2016, 28, 1610–1615.

    Article  CAS  Google Scholar 

  27. Roy, S.; Kim, J.; Kotal, M.; Tabassian, R.; Kim, K. J.; Oh, I. K. Collectively exhaustive electrodes based on covalent organic framework and antagonistic co-doping for electroactive ionic artificial muscles. Adv. Funct. Mater. 2019, 29, 1900161.

    Article  Google Scholar 

  28. Roy, S.; Kim, J.; Kotal, M.; Kim, K. J.; Oh, I. K. Electroionic antagonistic muscles based on nitrogen-doped carbons derived from poly (triazine-triptycene). Adv. Sci. 2017, 4, 1700410.

    Article  Google Scholar 

  29. Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.

    Article  CAS  Google Scholar 

  30. Khazaei, M.; Ranjbar, A.; Arai, M.; Sasaki, T.; Yunoki, S. Electronic properties and applications of MXenes: A theoretical review. J. Mater. Chem. C 2017, 5, 2488–2503.

    Article  CAS  Google Scholar 

  31. Zang, X. N.; Chen, W. S.; Zou, X. L.; Hohman, J. N.; Yang, L. J.; Li, B. X.; Wei, M. S.; Zhu, C. H.; Liang, J. M.; Sanghadasa, M. et al. Self-assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis. Adv. Mater. 2018, 30, 1805188.

    Article  Google Scholar 

  32. Ahmed, B.; Anjum, D. H.; Hedhili, M. N.; Gogotsi, Y.; Alshareef, H. N. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale 2016, 8, 7580–7587.

    Article  CAS  Google Scholar 

  33. Li, Z. X.; Ma, C.; Wen, Y. Y.; Wei, Z. T.; Xing, X. F.; Chu, J. M.; Yu, C. C.; Wang, K. L.; Wang, Z. K. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 2020, 13, 196–202.

    Article  CAS  Google Scholar 

  34. Boota, M.; Gogotsi, Y. MXene-conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 2019, 9, 1802917.

    Article  Google Scholar 

  35. Song, X. L.; Wang, H.; Jin, S. M.; Lv, M.; Zhang, Y.; Kong, X. D.; Xu, H. M.; Ma, T.; Luo, X. Y.; Tan, H. F. et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659–1667.

    Article  CAS  Google Scholar 

  36. Lei, Y. J.; Zhao, W. L.; Zhang, Y. Z.; Jiang, Q.; He, J. H.; Baeumner, A. J.; Wolfbeis, O. S.; Wang, Z. L.; Salama, K. N.; Alshareef, H. N. A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small 2019, 15, 1901190.

    Article  Google Scholar 

  37. Li, T. K.; Chen, L. L.; Yang, X.; Chen, X.; Zhang, Z. H.; Zhao, T. T.; Li, X. F.; Zhang, J. H. A flexible pressure sensor based on an MXene-textile network structure. J. Mater. Chem. C 2019, 7, 1022–1027.

    Article  CAS  Google Scholar 

  38. Li, X. L.; Yin, X. W.; Han, M. K.; Song, C. Q.; Xu, H. L.; Hou, Z. X.; Zhang, L. T.; Cheng, L. F. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 2017, 5, 4068–4074.

    Article  CAS  Google Scholar 

  39. Li, X. L.; Yin, X. W.; Han, M. K.; Song, C. Q.; Sun, X. N.; Xu, H. L.; Cheng, L. F.; Zhang, L. T. A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene. J. Mater. Chem. C 2017, 5, 7621–7628.

    Article  CAS  Google Scholar 

  40. Bian, R. J.; He, G. L.; Zhi, W. Q.; Xiang, S. L.; Wang, T. W.; Cai, D. Y. Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C 2019, 7, 474–478.

    Article  CAS  Google Scholar 

  41. Yun, T.; Kim, H.; Iqbal, A.; Cho, Y. S.; Lee, G. S.; Kim, M. K.; Kim, S. J.; Kim, D.; Gogotsi, Y.; Kim, S. O. et al. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 2020, 32, 1906769.

    Article  CAS  Google Scholar 

  42. Pang, D.; Alhabeb, M.; Mu, X. P.; Dall’Agnese, Y.; Gogotsi, Y.; Gao, Y. Electrochemical actuators based on two-dimensional Ti3C2Tx (MXene). Nano Lett. 2019, 19, 7443–7448.

    Article  CAS  Google Scholar 

  43. Umrao, S.; Tabassian, R.; Kim, J.; Nguyen, V. H.; Zhou, Q. T.; Nam, S.; Oh, I. K. MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 2019, 4, eaaw7797.

    Article  Google Scholar 

  44. Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681.

    Article  CAS  Google Scholar 

  45. Zhu, M. S.; Huang, Y.; Deng, Q. H.; Zhou, J.; Pei, Z. X.; Xue, Q.; Huang, Y.; Wang, Z. F.; Li, H. F.; Huang, Q. et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv. Energy Mater. 2016, 6, 1600969.

    Article  Google Scholar 

  46. Sun, R. H.; Zhang, H. B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z. Z. Highly conductive transition metal carbide/carbonitride (MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 2017, 27, 1702807.

    Article  Google Scholar 

  47. Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644.

    Article  CAS  Google Scholar 

  48. Lukatskaya, M. R.; Bak, S. M.; Yu, X. Q.; Yang, X. Q.; Barsoum, M. W.; Gogotsi, Y. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 2015, 5, 1500589.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Basic Research Program of China (Grant No. 2018YFA0208403), the National Natural Science Foundation of China (Grant Nos. 51861165103, 11832010, 11890682, and 21721002), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB36000000 and XDB30020100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zhao or Zhong Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wang, T., Weng, C. et al. Engineering electrochemical actuators with large bending strain based on 3D-structure titanium carbide MXene composites. Nano Res. 14, 2277–2284 (2021). https://doi.org/10.1007/s12274-020-3222-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3222-x

Keywords

Navigation