Skip to main content
Log in

Boosting triplet self-trapped exciton emission in Te(IV)-doped Cs2SnCl6 perovskite variants

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Perovskite variants have attracted wide interest because of the lead-free nature and strong self-trapped exciton (STE) emission. Divalent Sn(II) in CsSnX3 perovskites is easily oxidized to tetravalent Sn(IV), and the resulted Cs2SnCl6 vacancy-ordered perovskite variant exhibits poor photoluminescence property although it has a direct band gap. Controllable doping is an effective strategy to regulate the optical properties of Cs2SnX6. Herein, combining the first principles calculation and spectral analysis, we attempted to understand the luminescence mechanism of Te4+-doped Cs2SnCl6 lead-free perovskite variants. The chemical potential and defect formation energy are calculated to confirm theoretically the feasible substitutability of tetravalent Te4+ ions in Cs2SnCl6 lattices for the Sn-site. Through analysis of the absorption, emission/excitation, and time-resolved photoluminescence (PL) spectroscopy, the intense green-yellow emission in Te4+:Cs2SnCl6 was considered to originate from the triplet Te(IV) ion 3P11S0 STE recombination. Temperature-dependent PL spectra demonstrated the strong electron-phonon coupling that inducing an evident lattice distortion to produce STEs. We further calculated the electronic band structure and molecular orbital levels to reveal the underlying photophysical process. These results will shed light on the doping modulated luminescence properties in stable lead-free Cs2MX6 vacancy-ordered perovskite variants and be helpful to understand the optical properties and physical processes of doped perovskite variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, H.; Wang, H.; Wu, J.; Wang, F.; Zhang, T.; Wang, Y. F.; Liu, D. T.; Li, S. B.; Penty, R. V.; White, I. H. Flexible optoelectronic devices based on metal halide perovskites. Nano Res. 2020, 13, 1997–2018.

    CAS  Google Scholar 

  2. Granados del Águila, A.; Do, T. T. H.; Xing, J.; Jee, W. J.; Khurgin, J. B.; Xiong, Q. H. Efficient up-conversion photoluminescence in all-inorganic lead halide perovskite nanocrystals. Nano Res. 2020, 13, 1962–1969.

    Google Scholar 

  3. Lin, P. C.; Chen, H. B.; Wei, Z.; Lin, Y. R.; Lin, J. H.; Chen, Y.; Cheng, Z. D. Continuous-flow synthesis of doped all-inorganic perovskite nanocrystals enabled by a microfluidic reactor for light-emitting diode application. Sci. China Mater. 2020, 63, 1526–1536.

    CAS  Google Scholar 

  4. Park, N. G.; Zhu, K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 2020, 5, 333–350.

    CAS  Google Scholar 

  5. Fu, Y. P.; Zhu, H. M.; Chen, J.; Hautzinger, M. P.; Zhu, X. Y.; Jin, S. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 2019, 4, 169–188.

    CAS  Google Scholar 

  6. Huang, J. S.; Yuan, Y. B.; Shao, Y. C.; Yan, Y. F. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2017, 2, 17042.

    CAS  Google Scholar 

  7. Frohna, K.; Deshpande, T.; Harter, J.; Peng, W.; Barker, B. A.; Neaton, J. B.; Louie, S. G.; Bakr, O. M.; Hsieh, D.; Bernardi, M. Inversion symmetry and bulk Rashba effect in methylammonium lead iodide perovskite single crystals. Nat. Commun. 2018, 9, 1829.

    Google Scholar 

  8. Li, X. J.; Chen, M. M.; Mei, S. L.; Wang, B. Z.; Wang, K. Y.; Xing, G. C.; Tang, Z. K. Light-induced phase transition and photochromism in all-inorganic two-dimensional Cs2PbI2Cl2 perovskite. Sci. China Mater. 2020, 63, 1510–1517.

    CAS  Google Scholar 

  9. Yang, H. J.; Cai, T.; Liu, E. X.; Hills-Kimball, K.; Gao, J. B.; Chen, O. Synthesis and transformation of zero-dimensional Cs3BiX6 (X=Cl, Br) perovskite-analogue nanocrystals. Nano Res. 2020, 13, 282–291.

    CAS  Google Scholar 

  10. Liu, H.; Siron, M.; Gao, M. Y.; Lu, D.; Bekenstein, Y.; Zhang, D. D.; Dou, L. T.; Alivisatos, A. P.; Yang, P. D. Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly. Nano Res. 2020, 13, 1453–1458.

    CAS  Google Scholar 

  11. Faheem, M. B.; Khan, B.; Feng, C.; Farooq, M. U.; Raziq, F.; Xiao, Y. Q.; Li, Y. B. All-inorganic perovskite solar cells: Energetics, key challenges, and strategies toward commercialization. ACS Energy Lett. 2020, 5, 290–320.

    CAS  Google Scholar 

  12. Ju, M. G.; Chen, M.; Zhou, Y. Y.; Dai, J.; Ma, L.; Padture, N. P.; Zeng, X. C. Toward eco-friendly and stable perovskite materials for photovoltaics. Joule 2018, 2, 1231–1241.

    CAS  Google Scholar 

  13. Park, Y.; Jana, A.; Myung, C. W.; Yoon, T.; Lee, G.; Kocher, C. C.; Ying, G. H.; Osokin, V.; Taylor, R. A.; Kim, K. S. Enhanced photoluminescence quantum yield of MAPbBr3 nanocrystals by passivation using graphene. Nano Res. 2020, 13, 932–938.

    CAS  Google Scholar 

  14. Yang, W. F.; Igbari, F.; Lou, Y. H.; Wang, Z. K.; Liao, L. S. Tin halide perovskites: Progress and challenges. Adv. Energy Mater. 2020, 10, 1902584.

    CAS  Google Scholar 

  15. Ran, C. X.; Gao, W. Y.; Li, J. R.; Xi, J.; Li, L.; Dai, J. F.; Yang, Y. G.; Gao, X. Y.; Dong, H.; Jiao, B. et al. Conjugated organic cations enable efficient self-healing FASnI3 solar cells. Joule 2019, 3, 3072–3087.

    CAS  Google Scholar 

  16. Qiu, X. F.; Cao, B. Q.; Yuan, S.; Chen, X. F.; Qiu, Z. W.; Jiang, Y. N.; Ye, Q.; Wang, H. Q.; Zeng, H. B.; Liu, J. et al. From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Solar Energy Mater. Solar Cells 2017, 159, 227–234.

    CAS  Google Scholar 

  17. Lee, B.; Stoumpos, C. C.; Zhou, N. J.; Hao, F.; Malliakas, C.; Yeh, C. Y.; Marks, T. J.; Kanatzidis, M. G.; Chang, R. P. H. Air-stable molecular semiconducting Iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. J. Am. Chem. Soc. 2014, 136, 15379–15385.

    CAS  Google Scholar 

  18. Zhang, X. Y.; Li, L. N.; Sun, Z. H.; Luo, J. H. Rational chemical doping of metal halide perovskites. Chem. Soc. Rev. 2019, 48, 517–539.

    CAS  Google Scholar 

  19. Jing, Y. Y.; Liu, Y.; Jiang, X. X.; Molokeev, M. S.; Lin, Z. S.; Xia, Z. G. Sb3+ dopant and halogen substitution triggered highly efficient and tunable emission in lead-free metal halide single crystals. Chem. Mater. 2020, 32, 5327–5334.

    CAS  Google Scholar 

  20. Liu, Y.; Rong, X. M.; Li, M. Z.; Molokeev, M. S.; Zhao, J.; Xia, Z. G. Incorporating rare-earth terbium(III) ions into Cs2AgInCl6:Bi nanocrystals toward tunable photoluminescence. Angew. Chem., Int. Ed. 2020, 59, 11634–11640.

    CAS  Google Scholar 

  21. Sun, Q.; Wang, S. P.; Zhao, C. Y.; Leng, J.; Tian, W. M.; Jin, S. Y. Excitation-dependent emission color tuning from an individual Mn-doped perovskite microcrystal. J. Am. Chem. Soc. 2019, 141, 20089–20096.

    CAS  Google Scholar 

  22. Fei, L. L.; Yuan, X.; Hua, J.; Ikezawa, M.; Zeng, R. S.; Li, H. B.; Masumoto, Y.; Zhao, J. L. Enhanced luminescence and energy transfer in Mn2+ doped CsPbCl3−xBrx perovskite nanocrystals. Nanoscale 2018, 10, 19435–19442.

    CAS  Google Scholar 

  23. Zou, S. H.; Liu, Y. S.; Li, J. H.; Liu, C. P.; Feng, R.; Jiang, F. L.; Li, Y. X.; Song, J. Z.; Zeng, H. B.; Hong, M. C. et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 2017, 139, 11443–11450.

    CAS  Google Scholar 

  24. Chu, L.; Ahmad, W.; Liu, W.; Yang, J.; Zhang, R.; Sun, Y.; Yang, J. P.; Li, X. A. Lead-free halide double perovskite materials: A new superstar toward green and stable optoelectronic applications. Nano-Micro Lett. 2019, 11, 16.

    Google Scholar 

  25. Zhao, X. G.; Yang, D. W.; Ren, J. C.; Sun, Y. H.; Xiao, Z. W.; Zhang, L. J. Rational design of halide double perovskites for optoelectronic applications. Joule 2018, 2, 1662–1673.

    CAS  Google Scholar 

  26. Khalfin, S.; Bekenstein, Y. Advances in lead-free double perovskite nanocrystals, engineering band-gaps and enhancing stability through composition tunability. Nanoscale 2019, 11, 8665–8679.

    CAS  Google Scholar 

  27. Locardi, F.; Sartori, E.; Buha, J.; Zito, J.; Prato, M.; Pinchetti, V.; Zaffalon, M. L.; Ferretti, M.; Brovelli, S.; Infante, I. et al. Emissive Bi-doped double perovskite Cs2Ag1−xNaxInCl6 nanocrystals. ACS Energy Lett. 2019, 4, 1976–1982.

    CAS  Google Scholar 

  28. Luo, J. J.; Wang, X. M.; Li, S. R.; Liu, J.; Guo, Y. M.; Niu, G. D.; Yao, L. H.; Fu, Y. H.; Gao, L.; Dong, Q. S. et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 2018, 563, 541–545.

    CAS  Google Scholar 

  29. Ke, B.; Zeng, R. S.; Zhao, Z.; Wei, Q. L.; Xue, X. G.; Bai, K.; Cai, C. X.; Zhou, W. C.; Xia, Z. G.; Zou, B. S. Homo- and heterovalent doping-mediated self-trapped exciton emission and energy transfer in Mn-doped Cs2Na1−xAgxBiCl6 double perovskites. J. Phys. Chem. Lett. 2020, 11, 340–348.

    CAS  Google Scholar 

  30. Maughan, A. E.; Ganose, A. M.; Scanlon, D. O.; Neilson, J. R. Perspectives and design principles of vacancy-ordered double perovskite halide semiconductors. Chem. Mater. 2019, 31, 1184–1195.

    CAS  Google Scholar 

  31. Zhou, L.; Liao, J. F.; Huang, Z. G.; Wang, X. D.; Xu, Y. F.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. All-inorganic lead-free Cs2PdX6 (X=Br, I) perovskite nanocrystals with single unit cell thickness and high stability. ACS Energy Lett. 2018, 3, 2613–2619.

    CAS  Google Scholar 

  32. Chen, M.; Ju, M. G.; Carl, A. D.; Zong, Y. X.; Grimm, R. L.; Gu, J. J.; Zeng, X. C.; Zhou, Y. Y.; Padture, N. P. Cesium titanium(IV) bromide thin films based stable lead-free perovskite solar cells. Joule 2018, 2, 558–570.

    CAS  Google Scholar 

  33. Euvrard, J.; Wang, X. M.; Li, T. Y.; Yan, Y. F.; Mitzi, D. B. Is Cs2TiBr6 a promising Pb-free perovskite for solar energy applications? J. Mater. Chem. A 2020, 8, 4049–4054.

    CAS  Google Scholar 

  34. Tan, Z. F.; Li, J. H.; Zhang, C.; Li, Z.; Hu, Q. S.; Xiao, Z. W.; Kamiya, T.; Hosono, H.; Niu, G. D.; Lifshitz, E. et al. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: Photoluminescence induced by impurity doping. Adv. Funct. Mater. 2018, 28, 1801131.

    Google Scholar 

  35. Jing, Y. Y.; Liu, Y.; Zhao, J.; Xia, Z. G. Sb3+ doping-Induced triplet self-trapped excitons emission in lead-free Cs2SnCl6 nanocrystals. J. Phys. Chem. Lett. 2019, 10, 7439–7444.

    CAS  Google Scholar 

  36. Maughan, A. E.; Ganose, A. M.; Bordelon, M. M.; Miller, E. M.; Scanlon, D. O.; Neilson, J. R. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2Tel6. J. Am. Chem. Soc. 2016, 138, 8453–8464.

    CAS  Google Scholar 

  37. Tan, Z. F.; Chu, Y. M.; Chen, J. X.; Li, J. H.; Ji, G. Q.; Niu, G. D.; Gao, L.; Xiao, Z. W.; Tang, J. Lead-free perovskite variant solid solutions Cs2Sn1−’xTexCl6: Bright luminescence and high anti-water stability. Adv. Mater. 2020, 32, 2002443.

    CAS  Google Scholar 

  38. Van de Walle, C. G.; Neugebauer, J. First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 2004, 95, 3851–3879.

    CAS  Google Scholar 

  39. Wei, Q. L.; Lin, C. Q.; Li, Y. F.; Zhang, X. Y.; Zhang, Q. Y.; Shen, Q.; Cheng, Y. C.; Huang, W. Physics of intrinsic point defects in bismuth oxychalcogenides: A first-principles investigation. J. Appl. Phys. 2018, 124, 055701.

    Google Scholar 

  40. Li, J. H.; Tan, Z. F.; Hu, M. C.; Chen, C.; Luo, J. J.; Li, S. R.; Gao, L.; Xiao, Z. W.; Niu, G. D.; Tang, J. Antimony doped Cs2SnCl6 with bright and stable emission. Front. Optoelectron. 2019, 12, 352–364.

    Google Scholar 

  41. Sedakova, T. V.; Mirochnik, A. G. Luminescent and thermochromic properties of tellurium(IV) halide complexes with cesium. Opt. Spectrosc 2016, 120, 268–273.

    CAS  Google Scholar 

  42. Drummen, P. J. H.; Donker, H.; Smit, W. M. A.; Blasse, G. Jahn-Teller distortion in the excited state of tellurium(IV) in Cs2MCl6 (M=Zr, Sn). Chem. Phys. Lett. 1988, 144, 460–462.

    CAS  Google Scholar 

  43. Li, S. R.; Luo, J. J.; Liu, J.; Tang, J. Self-trapped excitons in all-inorganic halide perovskites: Fundamentals, status, and potential applications. J. Phys. Chem. Lett. 2019, 10, 1999–2007.

    CAS  Google Scholar 

  44. Kahmann, S.; Tekelenburg, E. K.; Duim, H.; Kamminga, M. E.; Loi, M. A. Extrinsic nature of the broad photoluminescence in lead iodide-based Ruddlesden-Popper perovskites. Nat. Commun. 2020, 11, 2344.

    CAS  Google Scholar 

  45. Smith, M. D.; Connor, B. A.; Karunadasa, H. I. Tuning the luminescence of layered halide perovskites. Chem. Rev. 2019, 119, 3104–3139.

    CAS  Google Scholar 

  46. Blasse, G.; Dirksen, G. J.; Abriel, W. The influence of distortion of the Te(IV) coordination octahedron on its luminescence. Chem. Phys. Lett. 1987, 136, 460–464.

    CAS  Google Scholar 

  47. Diroll, B. T.; Zhou, H.; Schaller, R. D. Low-temperature absorption, photoluminescence, and lifetime of CsPbX3 (X=Cl, Br, I) nanocrystals. Adv. Funct. Mater. 2018, 28, 1800945.

    Google Scholar 

  48. Zhao, Z.; Zhong, M. Y.; Zhou, W. C.; Peng, Y. H.; Yin, Y. L.; Tang, D. S.; Zou, B. S. Simultaneous triplet exciton-phonon and exciton-photon photoluminescence in the individual weak confinement CsPbBr3 micro/nanowires. J. Phys. Chem. C 2019, 123, 25349–25358.

    CAS  Google Scholar 

  49. Zeng, R. S.; Zhang, L. L.; Xue, Y.; Ke, B.; Zhao, Z.; Huang, D.; Wei, Q. L.; Zhou, W. C.; Zou, B. S. Highly efficient blue emission from self-trapped excitons in stable Sb3+-doped Cs2NaInCl6 double perovskites. J. Phys. Chem. Lett. 2020, 11, 2053–2061.

    CAS  Google Scholar 

  50. Kaltzoglou, A.; Antoniadou, M.; Kontos, A. G.; Stoumpos, C. C.; Perganti, D.; Siranidi, E.; Raptis, V.; Trohidou, K.; Psycharis, V.; Kanatzidis, M. G. et al. Optical-vibrational properties of the Cs2SnX6 (X=Cl, Br, I) defect perovskites and hole-transport efficiency in dye-sensitized solar cells. J. Phys. Chem. C 2016, 120, 11777–11785.

    CAS  Google Scholar 

  51. Fujimoto, Y.; Saeki, K.; Nakauchi, D.; Fukada, H.; Yanagida, T.; Kawamoto, H.; Koshimizu, M.; Asai, K. Photoluminescence, photoacoustic, and scintillation properties of Te4+-doped Cs2HfCl6 crystals. Mater. Res. Bull. 2018, 105, 291–295.

    CAS  Google Scholar 

  52. Meng, W. W.; Wang, X. M.; Xiao, Z. W.; Wang, J. B.; Mitzi, D. B.; Yan, Y. F. Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. J. Phys. Chem. Lett. 2017, 8, 2999–3007.

    CAS  Google Scholar 

  53. Ackerman, J. F. Preparation and luminescence of some [K2PtCl6] materials. Mater. Res. Bull. 1984, 19, 783–791.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21661010 and 11774134), Guangxi Natural Science Foundation (No. 2017GXNSFGA198005), Natural Science Foundation of Hunan Province (No. 2020JJ4424), Research Foundation of Education Bureau of Hunan Province (No. 18A009). The calculation was supported by the highperformance computing platform of Guangxi University. J. Z., S. C. and B. Z. appreciate the special fund of “Guangxi Bagui Scholars”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weichang Zhou, Jialong Zhao or Bingsuo Zou.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, R., Bai, K., Wei, Q. et al. Boosting triplet self-trapped exciton emission in Te(IV)-doped Cs2SnCl6 perovskite variants. Nano Res. 14, 1551–1558 (2021). https://doi.org/10.1007/s12274-020-3214-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3214-x

Keywords

Navigation