Skip to main content
Log in

Self-exothermic reaction driven large-scale synthesis of phosphorescent carbon nanodots

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Phosphorescent carbon nanodots (CNDs) have various attractive properties and potential applications, but it remains a formidable challenge to achieve large-scale phosphorescent CNDs limited by current methods. Herein, a large-scale synthesis method for phosphorescent CNDs has been demonstrated via precursors’ self-exothermic reaction at room temperature. The as-prepared CNDs show fluorescence and phosphorescence property, which are comparable with that synthesized by solvothermal and microwave method. Experimental and computational studies indicate that exotic atom doped sp2 hybridized carbon core works as an emissive center, which facilities the intersystem crossing from singlet state to triplet state. The CNDs show phosphorescence with tunable lifetimes from 193 ms to 1.13 s at different temperatures. The demonstration of large-scale synthesis of phosphorescent CNDs at room temperature opens up a new window for room temperature fabrication phosphorescent CNDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gong, Y. Y.; Chen, G.; Peng, Q.; Yuan, W. Z.; Xie, Y. J.; Li, S. H.; Zhang, Y. M.; Tang, B. Z. Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens. Adv. Mater. 2015, 27, 6195–6201.

    Article  CAS  Google Scholar 

  2. Cai, S. Z.; Shi, H. F.; Li, J. W.; Gu, L.; Ni, Y.; Cheng, Z. C.; Wang, S.; Xiong, W. W.; Li, L.; An, Z. F. et al. Visible-light-excited ultralong organic phosphorescence by manipulating intermolecular interactions. Adv. Mater. 2017, 29, 1701244

    Article  Google Scholar 

  3. Sun, H. B.; Liu, S. J.; Lin, W. P.; Zhang, K. Y.; Lv, W.; Huang, X.; Huo, F. W.; Yang, H. R.; Jenkins, G.; Zhao, Q. et al. Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun. 2014, 5, 3601.

    Article  Google Scholar 

  4. An, Z. F.; Zheng, C.; Tao, Y.; Chen, R. F.; Shi, H. F.; Chen, T.; Wang, Z. X.; Li, H. H.; Deng, R. R.; Liu, X. G. et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 2015, 14, 685–690.

    Article  CAS  Google Scholar 

  5. He, Z. K.; Zhao, W. J.; Lam, J. W. Y.; Peng, Q.; Ma, H. L.; Liang, G. D.; Shuai, Z. G.; Tang, B. Z. White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat. Commun. 2017, 8, 416.

    Article  Google Scholar 

  6. Liang, Y. C.; Gou, S. S.; Liu, K. K.; Wu, W. J.; Guo, C. Z.; Lu, S. Y.; Zang, J. H.; Wu, X. Y.; Lou, Q.; Dong, L. et al. Ultralong and efficient phosphorescence from silica confined carbon nanodots in aqueous solution. Nano Today 2020, 34, 100900.

    Article  CAS  Google Scholar 

  7. Li, D. F.; Lu, F. F.; Wang, J.; Hu, W. D.; Cao, X. M.; Ma, X.; Tian, H. Amorphous metal-free room-temperature phosphorescent small molecules with multicolor photoluminescence via a host-guest and dual-emission strategy. J. Am. Chem. Soc. 2018, 140, 1916–1923.

    Article  CAS  Google Scholar 

  8. Liu, K. K.; Liu, Q.; Yang, D. W.; Liang, Y. C.; Sui, L. Z.; Wei, J. Y.; Xue, G. W.; Zhao, W. B.; Wu, X. Y.; Dong, L. et al. Water-induced MAPbBr3@PbBr(OH) with enhanced luminescence and stability. Light: Sci. Appl. 2020, 9, 44.

    Article  CAS  Google Scholar 

  9. Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

    Article  CAS  Google Scholar 

  10. Wei, J. Y.; Lou, Q.; Zang, J. H.; Liu, Z. Y.; Ye, Y. L.; Shen, C. L.; Zhao, W. B.; Dong, L.; Shan, C. X. Scalable Synthesis of Green Fluorescent Carbon Dot Powders with Unprecedented Efficiency. Adv. Opt. Mater. 2020, 8, 1901938.

    Article  CAS  Google Scholar 

  11. Zheng, Y. B.; Liu, H. Y.; Li, J. X.; Xiang, J.; Panmai, M.; Dai, Q. F.; Xu, Y.; Tie, S. L.; Lan, S. Controllable formation of luminescent carbon quantum dots mediated by the Fano resonances formed in oligomers of gold nanoparticles. Adv. Mater. 2019, 31, 1901371.

    Article  Google Scholar 

  12. Zhang, J.; Yuan, Y.; Gao, M. L.; Han, Z.; Chu, C. Y.; Li, Y. G.; van Zijl, P. C. M.; Ying, M. Y.; Bulte, J. W. M.; Liu, G. S. Carbon dots as a new class of diamagnetic chemical exchange saturation transfer (diaCEST) MRI contrast agents. Angew. Chem., Int. Ed. 2019, 58, 9871–9875.

    Article  CAS  Google Scholar 

  13. Li, H. X.; Yan, X.; Kong, D. S.; Jin, R.; Sun, C. Y.; Du, D.; Lin, Y. H.; Lu, G. Y. Recent advances in carbon dots for bioimaging applications. Nanoscale Horiz. 2020, 5, 218–234.

    Article  CAS  Google Scholar 

  14. Ye, X. X.; Xiang, Y. H.; Wang, Q. R.; Li, Z.; Liu, Z. H. A red emissive two-photon fluorescence probe based on carbon dots for intracellular pH detection. Small 2019, 15, 1901673.

    Article  CAS  Google Scholar 

  15. Wei, X. J.; Li, L.; Liu, J. L.; Yu, L. D.; Li, H. B.; Cheng, F.; Yi, X. T.; He, J. M.; Li, B. S. Green synthesis of fluorescent carbon dots from gynostemma for bioimaging and antioxidant in Zebrafish. ACS Appl. Mater. Interfaces 2019, 11, 9832–9840.

    Article  CAS  Google Scholar 

  16. Sun, S.; Chen, J. Q.; Jiang, K.; Tang, Z. D.; Wang, Y. H.; Li, Z. J.; Liu, C. B.; Wu, A. G.; Lin, H. W. Ce6-modified carbon dots for multimodal-imaging-guided and single-NIR-laser-triggered photothermal/photodynamic synergistic cancer therapy by reduced irradiation power. ACS Appl. Mater. Interfaces 2019, 11, 5791–5803.

    Article  CAS  Google Scholar 

  17. Liu, K. K.; Song, S. Y.; Sui, L. Z.; Wu, S. X.; Jing, P. T.; Wang, R. Q.; Li, Q. Y.; Wu, G. R.; Zhang, Z. Z.; Yuan, K. J. et al. Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence. Adv. Sci. 2019, 6, 1900766.

  18. Zhi, B.; Cui, Y.; Wang, S. Y.; Frank, B. P.; Williams, D. N.; Brown, R. P.; Melby, E. S.; Hamers, R. J.; Rosenzweig, Z.; Fairbrother, D. H. et al. Malic acid carbon dots: From super-resolution live-cell imaging to highly efficient separation. ACS Nano 2018, 12, 5741–5752.

    Article  CAS  Google Scholar 

  19. Shen, C. L.; Lou, Q.; Zang, J. H.; Liu, K. K.; Qu, S. N.; Dong, L.; Shan, C. X. Near-infrared chemiluminescent carbon nanodots and their application in reactive oxygen species bioimaging. Adv. Sci. 2020, 7, 1903525.

    Article  CAS  Google Scholar 

  20. Shen, C. L.; Lou, Q.; Lv, C. F.; Zang, J. H.; Qu, S. N.; Dong, L.; Shan, C. X. Bright and Multicolor Chemiluminescent Carbon Nanodots for Advanced Information Encryption. Adv. Sci. 2019, 6, 1802331.

    Article  Google Scholar 

  21. Li, Y. B.; Bai, G. X.; Zeng, S. J.; Hao, J. H. Theranostic carbon dots with innovative NIR-II emission for in vivo renal-excreted optical imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2019, 11, 4737–4744.

    Article  CAS  Google Scholar 

  22. Song, S. Y.; Liu, K. K.; Wei, J. Y.; Lou, Q.; Shang, Y.; Shan, C. X. Deep-ultraviolet emissive carbon nanodots. Nano Lett. 2019, 19, 5553–5561.

    Article  CAS  Google Scholar 

  23. Feng, T. L.; Zeng, Q. S.; Lu, S. Y.; Yan, X. J.; Liu, J. J.; Tao, S. Y.; Yang, M. X.; Yang, B. Color-tunable carbon dots possessing solidstate emission for full-color light-emitting diodes applications. ACS Photonics 2018, 5, 502–510.

    Article  CAS  Google Scholar 

  24. Yuan, F. L.; Wang, Y. K.; Sharma, G.; Dong, Y. T.; Zheng, X. P.; Li, P. C.; Johnston, A.; Bappi, G.; Fan, J. Z.; Kung, H. et al. Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nat. Photonics 2020, 14, 171–176.

    Article  CAS  Google Scholar 

  25. Semeniuk, M.; Yi, Z. H.; Poursorkhabi, V.; Tjong, J.; Jaffer, S.; Lu, Z. H.; Sain, M. Future perspectives and review on organic carbon dots in electronic applications. ACS Nano 2019, 13, 6224–6255.

    Article  CAS  Google Scholar 

  26. Jiang, K.; Gao, X. L.; Feng, X. Y.; Wang, Y. H.; Li, Z. J.; Lin, H. W. Carbon dots with dual-emissive, robust, and aggregation-induced room-temperature phosphorescence characteristics. Angew. Chem., Int. Ed. 2020, 59, 1263–1269.

    Article  CAS  Google Scholar 

  27. Tang, G. Q.; Zhang, K.; Feng, T. L.; Tao, S. Y.; Han, M.; Li, R.; Wang, C. C.; Wang, Y.; Yang, B. One-step preparation of silica microspheres with super-stable ultralong room temperature phosphorescence. J. Mater. Chem. C 2019, 7, 8680–8687.

    Article  CAS  Google Scholar 

  28. Lin, C. J.; Zhuang, Y. X.; Li, W. H.; Zhou, T. L.; Xie, R. J. Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots. Nanoscale 2019, 11, 6584–6590.

    Article  CAS  Google Scholar 

  29. Li, W.; Wu, S. S.; Xu, X. K.; Zhuang, J. L.; Zhang, H. R.; Zhang, X. J.; Hu, C. F.; Lei, B. F.; Kaminski, C. F.; Liu, Y. Q. Carbon dotsilica nanoparticle composites for ultralong lifetime phosphorescence imaging in tissue and cells at room temperature. Chem. Mater. 2019, 31, 9887–9894.

    Article  CAS  Google Scholar 

  30. Li, Q. J.; Zhou, M.; Yang, Q. F.; Wu, Q.; Shi, J.; Gong, A. H.; Yang, M. Y. Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices. Chem. Mater. 2016, 28, 8221–8227.

    Article  CAS  Google Scholar 

  31. Liu, J. C.; Zhang, H. Y.; Wang, N.; Yu, Y.; Cui, Y. Z.; Li, J. Y.; Yu, J. H. Template-modulated afterglow of carbon dots in zeolites: Room-temperature phosphorescence and thermally activated delayed fluorescence. ACS Mater. Lett. 2019, 1, 58–63.

    Article  CAS  Google Scholar 

  32. Li, W.; Zhou, W.; Zhou, Z. S.; Zhang, H. R.; Zhang, X. J.; Zhuang, J. L.; Liu, Y. L.; Lei, B. F.; Hu, C. F. A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix. Angew. Chem., Int. Ed. 2019, 58, 7278–7283.

    Article  CAS  Google Scholar 

  33. Zhang, J. Y.; Lu, X. M.; Tang, D. D.; Wu, S. H.; Hou, X. D.; Liu, J. W.; Wu, P. Phosphorescent carbon dots for highly efficient oxygen photosensitization and as photo-oxidative nanozymes. ACS Appl. Mater. Interfaces 2018, 10, 40808–40814.

    Article  CAS  Google Scholar 

  34. Tao, S. Y.; Lu, S. Y.; Geng, Y. J.; Zhu, S. J.; Redfern, S. A. T.; Song, Y. B.; Feng, T. L.; Xu, W. Q.; Yang, B. Design of metal-free polymer carbon dots: A new class of room-temperature phosphorescent materials. Angew. Chem., Int. Ed. 2018, 57, 2393–2398.

    Article  CAS  Google Scholar 

  35. Wang, C.; Chen, Y. Y.; Xu, Y. L.; Ran, G. X.; He, Y. M.; Song, Q. J. Aggregation-induced room-temperature phosphorescence obtained from water-dispersible carbon dot-based composite materials. ACS Appl. Mater. Interfaces 2020, 12, 10791–10800.

    Article  Google Scholar 

  36. Jiang, K.; Hu, S. Z.; Wang, Y. C.; Li, Z. J.; Lin, H. W. Photo-stimulated polychromatic room temperature phosphorescence of carbon dots. Small 2020, 16, 2001909.

    Article  CAS  Google Scholar 

  37. De Medeiros, T. V.; Manioudakis, J.; Noun, F.; Macairan, J. R.; Victoria, F.; Naccache, R. Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C 2019, 7, 7175–7195.

    Article  CAS  Google Scholar 

  38. Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.

    Article  Google Scholar 

  39. Kenry; Chen, C. J.; Liu, B. Enhancing the performance of pure organic room-temperature phosphorescent luminophores. Nat. Commun. 2019, 10, 2111.

    Article  CAS  Google Scholar 

  40. Lower, S. K.; El-Sayed, M. A. The triplet state and molecular electronic processes in organic molecules. Chem. Rev. 1966, 66, 199–241.

    Article  CAS  Google Scholar 

  41. Jiang, K.; Wang, Y. H.; Cai, C. Z.; Lin, H. W. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications. Adv. Mater. 2018, 30, 1800783.

    Article  Google Scholar 

  42. Zhao, W. J.; He, Z. K.; Lam, J. W. Y.; Peng, Q.; Ma, H. L.; Shuai, Z. G.; Bai, G. X.; Hao, J. H.; Tang, B. Z. Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence. Chem 2016, 1, 592–602.

    Article  CAS  Google Scholar 

  43. Sun, C.; Zhang, Y.; Ruan, C.; Yin, C. Y.; Wang, X. Y.; Wang, Y. D.; Yu, W. W. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv. Mater. 2016, 28, 10088–10094.

    Article  CAS  Google Scholar 

  44. Li, D.; Jing, P. T.; Sun, L. H.; An, Y.; Shan, X. Y.; Lu, X. H.; Zhou, D.; Han, D.; Shen, D. Z.; Zhai, Y. C. et al. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots. Adv. Mater. 2018, 30, 1705913.

    Article  Google Scholar 

  45. Vallan, L.; Urriolabeitia, E. P.; Ruipérez, F.; Matxain, J. M.; Canton-Vitoria, R.; Tagmatarchis, N.; Benito, A. M.; Maser, W. K. Supramolecular-enhanced charge transfer within entangled polyamide chains as the origin of the universal blue fluorescence of polymer carbon dots. J. Am. Chem. Soc. 2018, 140, 12862–12869.

    Article  CAS  Google Scholar 

  46. Geng, X.; Sun, Y. Q.; Li, Z. H.; Yang, R.; Zhao, Y. M.; Guo, Y. F.; Xu, J. J.; Li, F. T.; Wang, Y.; Lu, S. Y. et al. Retrosynthesis of tunable fluorescent carbon dots for precise long-term mitochondrial tracking. Small 2019, 15, 1901517.

    Article  CAS  Google Scholar 

  47. Yang, H. Y.; Liu, Y. L.; Guo, Z. Y.; Lei, B. F.; Zhuang, J. L.; Zhang, X. J.; Liu, Z. M.; Hu, C. F. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat. Commun. 2019, 10, 1789.

    Article  Google Scholar 

  48. Lu, S. Y.; Sui, L. Z.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 2017, 29, 1603443.

    Article  Google Scholar 

  49. Lu, S. Y.; Xiao, G. J.; Sui, L. Z.; Feng, T. L.; Yong, X.; Zhu, S. J.; Li, B. J.; Liu, Z. Y.; Zou, B.; Jin, M. X. et al. Piezochromic carbon dots with two-photon fluorescence. Angew. Chem., Int. Ed. 2017, 56, 6187–6191.

    Article  CAS  Google Scholar 

  50. Sharma, A.; Gadly, T.; Neogy, S.; Ghosh, S. K.; Kumbhakar, M. Molecular Origin and Self-Assembly of Fluorescent Carbon Nanodots in Polar Solvents. J. Phys. Chem. Lett. 2017, 8, 1044–1052.

    Article  CAS  Google Scholar 

  51. Reckmeier, C. J.; Wang, Y.; Zboril, R.; Rogach, A. L. Influence of doping and temperature on solvatochromic shifts in optical spectra of carbon dots. J. Phys. Chem. C 2016, 120, 10591–10604.

    Article  CAS  Google Scholar 

  52. Yuan, F. L.; Yuan, T.; Sui, L. Z.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z. A.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.

    Article  Google Scholar 

  53. Liang, Y. C.; Shang, Y.; Liu, K. K.; Liu, Z.; Wu, W. J.; Liu, Q.; Zhao, Q.; Wu, X. Y.; Dong, L.; Shan, C. X. Water-induced ultralong room temperature phosphorescence by constructing hydrogen-bonded networks. Nano Res. 2020, 13, 875–881.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11904326, U1804155, and U1604263), China Postdoctoral Science Foundation (Nos. 2019TQ0287, 2019M662510), the Chemical Dynamics Research Center (Grant No. 21688102), the Key Technology Team of the Chinese Academy of Sciences (Grant No. GJJSTD20190002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai-Kai Liu, Yuan Shang or Chong-Xin Shan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, SY., Sui, LZ., Liu, KK. et al. Self-exothermic reaction driven large-scale synthesis of phosphorescent carbon nanodots. Nano Res. 14, 2231–2240 (2021). https://doi.org/10.1007/s12274-020-3204-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3204-z

Keywords

Navigation