Skip to main content

Lightweight porous silica foams with extreme-low dielectric permittivity and loss for future 6G wireless communication technologies

Abstract

In the next generation wireless communication systems operating at near terahertz frequencies, dielectric substrates with the lowest possible permittivity and loss factor are becoming essential. In this work, highly porous (98.9% ± 0.1%) and lightweight silica foams (0.025 ± 0.005 g/cm3), that have extremely low relative permittivity (εr = 1.018 ± 0.003 at 300 GHz) and corresponding loss factor (tan δ< 3 × 10−4 at 300 GHz) are synthetized by a template-assisted sol-gel method. After dip-coating the slabs of foams with a thin film of cellulose nanofibers, sufficiently smooth surfaces are obtained, on which it is convenient to deposit electrically conductive planar thin films of metals important for applications in electronics and telecommunication devices. Here, micropatterns of Ag thin films are sputtered on the substrates through a shadow mask to demonstrate double split-ring resonator metamaterial structures as radio frequency filters operating in the sub-THz band.

References

  1. Cabrol, P.; Pietraski, P. 60 GHz patch antenna array on low cost Liquid-Crystal Polymer (LCP) substrate. In Proceedings of 2014 IEEE Long Island Systems, Applications and Technology (LISAT), Farmingdale, NY, USA, 2014, pp 1–6.

  2. Park, S. J.; Shin, D. H.; Park, S. O. Low side-lobe substrate-integrated-waveguide antenna array using broadband unequal feeding network for millimeter-wave handset device. IEEE Trans. Antennas Propag. 2015, 64, 923–932.

    Google Scholar 

  3. Rappaport, T. S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G. N.; Schulz, J. K.; Samimi, M.; Gutierrez, F. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 2013, 1, 335–349.

    Google Scholar 

  4. Song, H. J.; Nagatsuma, T. Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 256–263.

    Google Scholar 

  5. Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G networks: Use cases and technologies. IEEE Commun. Mag. 2020, 58, 55–61.

    Google Scholar 

  6. Chowdhury, M. Z.; Shahjalal, M.; Hasan, M. K.; Jang, Y. M. The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges. Appl. Sci. 2019, 9, 4367.

    Google Scholar 

  7. Waterhouse, R.; Novack, D. Realizing 5G: Microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag. 2015, 16, 84–92.

    Google Scholar 

  8. Duan, B. Y. Evolution and innovation of antenna systems for beyond 5G and 6G. Front. Inf. Technol. Electron. Eng. 2020, 21, 1–3.

    Google Scholar 

  9. Imai, Y. Nanoparticle technology handbook. In Ceramic Fillers for High Frequency Dielectric Composites. 2018; pp 619–623.

  10. Yu, S. Z.; Wong, T. K. S.; Pita, K.; Hu, X. Synthesis of organically modified mesoporous silica as a low dielectric constant intermetal dielectric. J. Vac. Sci. Technol. B 2002, 20, 2036–2042.

    CAS  Google Scholar 

  11. Sebastian, M. T.; Ubic, R.; Jantunen, H. Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 2015, 60, 392–412.

    Google Scholar 

  12. Sebastian, M. T.; Jantunen, H. Polymer-ceramic composites of 0–3 connectivity for circuits in electronics: A review. Int. J. Appl. Ceram. Technol. 2010, 7, 415–434.

    CAS  Google Scholar 

  13. Baker-Jarvis, J. R.; Janezic, M. D.; Riddle, B. F.; Holloway, C. L.; Paulter, N. G. Jr.; Blendell, J. Dielectric and conductor-loss characterization and measurements on electronic packaging materials. NIST Tech. Note 1520 2001, 152.

  14. Volksen, W.; Miller, R. D.; Dubois, G. Low dielectric constant materials. Chem. Rev. 2010, 110, 56–110.

    CAS  Google Scholar 

  15. Baklanov, M. R.; Maex, K. Porous low dielectric constant materials for microelectronics. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 2006, 364, 201–215.

    CAS  Google Scholar 

  16. Gershon, D.; Calame, J. P.; Birnboim, A. Complex permittivity measurements and mixings laws of alumina composites. J. Appl. Phys. 2001, 89, 8110–8116.

    CAS  Google Scholar 

  17. Kordás, K.; Tóth, G.; Levoska, J.; Huuhtanen, M.; Keiski, R.; Härkönen, M.; George, T. F.; Vähäkangas, J. Room temperature chemical deposition of palladium nanoparticles in anodic aluminium oxide templates. Nanotechnology 2006, 17, 1459–1463.

    Google Scholar 

  18. Lee, I.; Zhang, Q.; Ge, J. P.; Yin, Y. D.; Zaera, F. Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability. Nano Res. 2011, 4, 115–123.

    CAS  Google Scholar 

  19. Guan, B. Y.; Wang, T.; Zeng, S. J.; Wang, X.; An, D.; Wang, D. M.; Cao, Y.; Ma, D. X.; Liu, Y. L.; Huo, Q. S. A versatile cooperative template-directed coating method to synthesize hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano Res. 2014, 7, 246–262.

    CAS  Google Scholar 

  20. Wang, L.; Zhao, W. J.; Tan, W. H. Bioconjugated silica nanoparticles: Development and applications. Nano Res. 2008, 1, 99–115.

    CAS  Google Scholar 

  21. Chiang, Y. C.; Lin, H. P.; Chang, H. H.; Cheng, Y. W.; Tang, H. Y.; Yen, W. C.; Lin, P. Y.; Chang, K. W.; Lin, C. P. A mesoporous silica biomaterial for dental biomimetic crystallization. ACS Nano 2014, 8, 12502–12513.

    CAS  Google Scholar 

  22. Li, Y. Y.; Cunin, F.; Link, J. R.; Gao, T.; Betts, R. E.; Reiver, S. H.; Chin, V.; Bhatia, S. N.; Sailor, M. J. Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 2003, 299, 2045–2047.

    CAS  Google Scholar 

  23. Shopsowitz, K. E.; Qi, H.; Hamad, W. Y.; MacLachlan, M. J. Freestanding mesoporous silica films with tunable chiral nematic structures. Nature 2010, 468, 422–425.

    CAS  Google Scholar 

  24. Feng, X.; Fryxell, G. E.; Wang, L. Q.; Kim, A. Y.; Liu, J.; Kemner, K. M. Functionalized monolayers on ordered mesoporous supports. Science 1997, 276, 923–926.

    CAS  Google Scholar 

  25. Yu, S. J.; Li, W.; Fujii, Y.; Omura, T.; Minami, H. Fluorescent spherical sponge cellulose sensors for highly selective and semiquantitative visual analysis: Detection of Hg2+ and Cu2+ ions. ACS Sustainable Chem. Eng. 2019, 7, 19157–19166.

    CAS  Google Scholar 

  26. Mandal, J.; Fu, Y. K.; Overvig, A. C.; Jia, M. X.; Sun, K. R.; Shi, N. N.; Zhou, H.; Xiao, X. H.; Yu, N. F.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315–319.

    CAS  Google Scholar 

  27. Ren, Y.; Lam, D. C. C. Low temperature processable ultra-low dielectric porous polyimide for high frequency applications. In International Conference on Electronic Materials and Packaging, 2006, pp 1–5.

  28. Tanaka, T.; Kawakami, N.; Hirano, T.; Fukumoto, Y.; Suzuki, T.; Kanamori, K.; Nakanishi, K. Porous Methylsiloxane gel thick film for millimeter-wave antenna substrate prepared by gap filling method. Mater. Res. Soc. 2006, 888, DOI: https://doi.org/10.1557/PROC-0888-V09-17.

  29. Notario, B.; Pinto, J.; Verdejo, R.; Rodríguez-Pérez, M. A. Dielectric behavior of porous PMMA: From the micrometer to the nanometer scale. Polymer 2016, 107, 302–305.

    CAS  Google Scholar 

  30. Yin, S.; Pan, L. M.; Huang, K.; Qiu, T.; Yang, J. Porous Si3N4 ceramics with hierarchical pore structures prepared by gelcasting using DMAA as gelling agent and PS as pore-forming agent. J. Alloys Compd. 2019, 805, 69–77.

    CAS  Google Scholar 

  31. Sun, Y. S.; Yang, Z. H.; Cai, D. L.; Li, Q.; Li, H. L.; Wang, S. J.; Jia, D. C.; Zhou, Y. Mechanical, dielectric and thermal properties of porous boron nitride/silicon oxynitride ceramic composites prepared by pressureless sintering. Ceram. Int. 2017, 43, 8230–8235.

    CAS  Google Scholar 

  32. Kawakami, N.; Fukumoto, Y.; Kinoshita, T.; Suzuki, K.; Inoue, K. I. Preparation of highly porous silica aerogel thin film by supercritical drying. Jpn. J. Appl. Phys. 2000, 39, L182.

    CAS  Google Scholar 

  33. Hyun, S. H.; Kim, T. Y.; Kim, G. S.; Park, H. H. Synthesis of Low-k porous silica films via freeze drying. J. Mater. Sci. Lett. 2000, 19, 1863–1866.

    CAS  Google Scholar 

  34. Dobó, D. G.; Berkesi, D.; Kukovecz, Á. Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene. J. Mol. Struct. 2017, 1140, 83–88.

    Google Scholar 

  35. Velev, O. D.; Jede, T. A.; Lobo, R. F.; Lenhoff, A. M. Porous silica via colloidal crystallization. Nature 1997, 389, 447–448.

    CAS  Google Scholar 

  36. Kuang, D. B.; Brezesinski, T.; Smarsly, B. Hierarchical porous silica materials with a trimodal pore system using surfactant templates. J. Am. Chem. Soc. 2004, 126, 10534–10535.

    CAS  Google Scholar 

  37. Pálvölgyi, P. S.; Nelo, M.; Pitkänen, O.; Peräntie, J.; Liimatainen, H.; Myllymäki, S.; Jantunen, H.; Kordas, K. Ultra-low permittivity porous silica-cellulose nanocomposite substrates for 6G telecommunication. Nanotechnology 2020, 31, 435203.

    Google Scholar 

  38. Pitkänen, O.; Tolvanen, J.; Szenti, I.; Kukovecz, Á.; Hannu, J.; Jantunen, H.; Kordas, K. Lightweight hierarchical carbon nanocomposites with highly efficient and tunable electromagnetic interference shielding properties. ACS Appl. Mater. Interfaces 2019, 11, 19331–19338.

    Google Scholar 

  39. Pham, T. N.; Sharifi, T.; Sandström, R.; Siljebo, W.; Shchukarev, A.; Kordas, K.; Wâgberg, T.; Mikkola, J. P. Robust hierarchical 3D carbon foam electrode for efficient water electrolysis. Sci. Rep. 2017, 7, 6112.

    Google Scholar 

  40. Kordas, K.; Pitkänen, O. Piezoresistive carbon foams in sensing applications. Front. Mater. 2019, 6, 93.

    Google Scholar 

  41. Hu, G. Q.; Li, W. Y.; Xu, J. N.; He, G. J.; Ge, Y. Y.; Pan, Y. S.; Wang, J. R.; Yao, B. D. Substantially reduced crystallization temperature of SBA-15 mesoporous silica in NaNO3 molten salt. Mater. Lett. 2016, 170, 179–182.

    CAS  Google Scholar 

  42. Darling, R. S.; Chou, I. M.; Bodnar, R. J. An occurrence of metastable cristobalite in high-pressure garnet granulite. Science 1997, 276, 91–93.

    CAS  Google Scholar 

  43. Joni, I. M.; Nulhakim, L.; Vanitha, M.; Panatarani, C. Characteristics of crystalline silica (SiO2) Particles prepared by simple solution method using sodium silicate (Na2SiO3) precursor. J. Phys. Conf. Ser. 2018, 1080, 012006.

    Google Scholar 

  44. Mitra, J.; Ghosh, M.; Bordia, R. K.; Sharma, A. Photoluminescent electrospun submicron fibers of hybrid organosiloxane and derived silica. RSC Adv. 2013, 3, 7591–7600.

    CAS  Google Scholar 

  45. Lu, M. Z.; Li, W. Z.; Brown, E. R. Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures. Opt. Lett. 2011, 36, 1071–1073.

    Google Scholar 

  46. Zhu, Y. H.; Vegesna, S.; Kuryatkov, V.; Holtz, M.; Saed, M.; Bernussi, A. A. Terahertz bandpass filters using double-stacked metamaterial layers. Opt. Lett. 2012, 37, 296–298.

    Google Scholar 

  47. Markel, V. A. Introduction to the Maxwell Garnett approximation: Tutorial. J. Opt. Soc. Am. A 2016, 33, 1244–1256.

    Google Scholar 

Download references

Acknowledgements

The authors thank Kai Metsäkoivu for the technical assistance and Henrikki Liimatainen for providing us with nanocellulose materials. The financial support received partly from EU Interreg Nord-Lapin liitto (project Transparent, conducting and flexible films for electrodes), Academy of Finland (6Genesis Flagship under Grant 318927), University of Oulu (projects Entity and PoC: Ultra-low permittivity and loss porous nanocomposites for future 6G telecommunication), Hungarian National Research, Development and Innovation Office through the projects GINOP-2.3.2-15-2016-00013 and GINOP-2.3.3-15-2016-00010, and the Ministry of Human Capacities, Hungary, grant 20391-3/2018/FEKUSTRAT is acknowledged. D. S. is thankful for the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Funding

Funding note Open access funding provided by University of Szeged

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akos Kukovecz or Krisztian Kordas.

Ethics declarations

Some of the authors of the paper (Petra S. Pálvölgyi, Olli Pitkänen, Heli Jantunen, Sami Myllymäki, Krisztian Kordas) and their institution filed an intellectual property (application number 20205944, Finnish Patent and Registration Office). The application covers the details of the synthesis, properties, and RF applications of the porous substrate material.

Electronic Supplementary Material

12274_2020_3201_MOESM1_ESM.pdf

Lightweight porous silica foams with extreme-low dielectric permittivity and loss for future 6G wireless communication technologies

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pálvölgyi, P.S., Sebők, D., Szenti, I. et al. Lightweight porous silica foams with extreme-low dielectric permittivity and loss for future 6G wireless communication technologies. Nano Res. 14, 1450–1456 (2021). https://doi.org/10.1007/s12274-020-3201-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3201-2

Keywords

  • low-permittivity materials
  • low-loss dielectrics
  • templated sol-gel synthesis
  • silica foams
  • 6G telecommunication