Skip to main content
Log in

Colloidal lead-free Cs2AgBiBr6 double perovskite nanocrystals: Synthesis, uniform thin-film fabrication, and application in solution-processed solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently developed lead-free double perovskite nanocrystals (NCs) have been proposed for the possible application in solution-processed optoelectronic devices. However, the optoelectronic applications of double perovskite NCs have been hampered due to the structural and chemical instability in the presence of polar molecules. Here, we report a facile strategy for the synthesis and purification of Cs2AgBiBr6 double perovskite NCs that remained stable even after washing with polar solvent. This is realized with our efficient colloidal route to synthesize Cs2AgBiBr6 NCs that involve stable and strongly coordinated precursor such as silver-trioctylphosphine complex together with bismuth neodecanoate, which leads to a significantly improved chemical and colloidal stability. Using layer-by-layer solid-state ligand exchange technique, a compact and crack-free thin film of Cs2AgBiBr6 NCs were fabricated. Finally, perovskite solar cells consisting of Cs2AgBiBr6 as an absorber layer were fabricated and tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, W. S.; Park, B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379.

    Article  CAS  Google Scholar 

  2. Xiao, Z. W.; Song, Z. N.; Yan, Y. F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 2019, 31, 1803792.

    Article  CAS  Google Scholar 

  3. Yang, Y.; You, J. B. Make perovskite solar cells stable. Nature 2017, 544, 155–156.

    Article  CAS  Google Scholar 

  4. Chung, I.; Song, J. H.; Im, J.; Androulakis, J.; Malliakas, C. D.; Li, H.; Freeman, A. J.; Kenney, J. T.; Kanatzidis, M. G. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 2012, 134, 8579–8587.

    Article  CAS  Google Scholar 

  5. Huang, L. Y; Lambrecht, W. R. L. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Phys. Rev. B 2013, 88, 165203.

    Article  CAS  Google Scholar 

  6. Chakraborty, S.; Xie, W.; Mathews, N.; Sherburne, M.; Ahuja, R.; Asta, M.; Mhaisalkar, S. G. Rational design: A high-throughput computational screening and experimental validation methodology for lead-free and emergent hybrid perovskites. ACS Energy Lett. 2017, 2, 837–845.

    Article  CAS  Google Scholar 

  7. Liao, W. Q.; Zhao, D. W.; Yu, Y.; Grice, C. R.; Wang, C. L.; Cimaroli, A. J.; Schulz, P.; Meng, W. W.; Zhu, K.; Xiong, R. G. et al. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 2016, 28, 9333–9340.

    Article  CAS  Google Scholar 

  8. Gupta, S.; Bendikov, T.; Hodes, G.; Cahen, D. CsSnBr3, a lead-free halide perovskite for long-term solar cell application: Insights on SnF2 addition. ACS Energy Lett. 2016, 1, 1028–1033.

    Article  CAS  Google Scholar 

  9. Park, B. W.; Philippe, B.; Zhang, X. L.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Bismuth based hybrid perovskites A3Bi2I9 (A: Methylammonium or cesium) for solar cell application. Adv. Mater. 2015, 27, 6806–6813.

    Article  CAS  Google Scholar 

  10. Saparov, B.; Hong, F.; Sun, J. P.; Duan, H. S.; Meng, W. W.; Cameron, S.; Hill, I. G.; Yan, Y. F.; Mitzi, D. B. Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor. Chem. Mater. 2015, 27, 5622–5632.

    Article  CAS  Google Scholar 

  11. Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C. et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941–2944.

    Article  CAS  Google Scholar 

  12. Giustino, F.; Snaith, H. J. Toward lead-free perovskite solar cells. ACS Energy Lett. 2016, 1, 1233–1240.

    Article  CAS  Google Scholar 

  13. Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 2016, 138, 2138–2141.

    Article  CAS  Google Scholar 

  14. McClure, E. T.; Ball, M. R.; Windl, W.; Woodward, P. M. Cs2AgBiX6(X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 2016, 28, 1348–1354.

    Article  CAS  Google Scholar 

  15. Volonakis, G.; Filip, M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Snaith, H. J.; Giustino, F. Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 2016, 7, 1254–1259.

    Article  CAS  Google Scholar 

  16. Savory, C. N.; Walsh, A.; Scanlon, D. O. Can Pb-free halide double perovskites support high-efficiency solar cells? ACS Energy Lett. 2016, 1, 949–955.

    Article  CAS  Google Scholar 

  17. Volonakis, G.; Haghighirad, A. A.; Milot, R. L.; Sio, W. H.; Filip, M. R.; Wenger, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J.; Giustino, F. Cs2InAgCl6: A new lead-free halide double perovskite with direct band Gap. J. Phys. Chem. Lett. 2017, 8, 772–778.

    Article  CAS  Google Scholar 

  18. Tran, T. T.; Panella, J. R.; Chamorro, J. R.; Morey, J. R.; McQueen, T. M. Designing indirect-direct bandgap transitions in double perovskites. Mater. Horiz. 2017, 4, 688–693.

    Article  CAS  Google Scholar 

  19. Pantaler, M.; Cho, K. T.; Queloz, V. I. E.; García Benito, I.; Fettkenhauer, C.; Anusca, I.; Nazeeruddin, M. K.; Lupascu, D. C.; Grancini, G. Hysteresis-free lead-free double-perovskite solar cells by interface engineering. ACS Energy Lett. 2018, 3, 1781–1786.

    Article  CAS  Google Scholar 

  20. Greul, E.; Petrus, M. L.; Binek, A.; Docampo, P.; Bein, T. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J. Mater. Chem. A 2017, 5, 19972–19981.

    Article  CAS  Google Scholar 

  21. Wu, C. C.; Zhang, Q. H.; Liu, Y.; Luo, W.; Guo, X.; Huang, Z. R.; Ting, H.; Sun, W. H.; Zhong, X. R.; Wei, S. Y. et al. The dawn of lead-free perovskite solar cell: Highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci. 2018, 5, 1700759.

    Article  CAS  Google Scholar 

  22. Ning, W. H.; Wang, F.; Wu, B.; Lu, J.; Yan, Z. B.; Liu, X. J.; Tao, Y. T.; Liu, J. M.; Huang, W.; Fahlman, M. et al. Long electron-hole diffusion length in high-quality lead-free double perovskite films. Adv. Mater. 2018, 30, 1706246.

    Article  CAS  Google Scholar 

  23. Gao, W. Y.; Ran, C. X.; Xi, J.; Jiao, B.; Zhang, W. W.; Wu, M. C.; Hou, X.; Wu, Z. X. High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiency. ChemPhysChem 2018, 19, 1696–1700.

    Article  CAS  Google Scholar 

  24. Kentsch, R.; Scholz, M.; Horn, J.; Schlettwein, D.; Oum, K.; Lenzer, T. Exciton dynamics and electron-phonon coupling affect the photovoltaic performance of the Cs2AgBiBr6 double perovskite. J. Phys. Chem. C 2018, 122, 25940–25947.

    Article  CAS  Google Scholar 

  25. Igbari, F.; Wang, R.; Wang, Z. K.; Ma, X. J.; Wang, Q.; Wang, K. L.; Zhang, Y.; Liao, L. S.; Yang, Y. Composition stoichiometry of Cs2AgBiBr6 films for highly efficient lead-free perovskite solar cells. Nano Lett. 2019, 19, 2066–2073.

    Article  CAS  Google Scholar 

  26. Yang, X. Q.; Chen, Y. H.; Liu, P. Y.; Xiang, H. M.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. P. Simultaneous power conversion efficiency and stability enhancement of Cs2AgBiBr6 lead-free inorganic perovskite solar cell through adopting a multifunctional dye interlayer. Adv. Funct. Mater. 2020, 30, 2001557.

    Article  CAS  Google Scholar 

  27. Jodlowski, A. D.; Rodríguez-Padrón, D.; Luque, R.; de, Miguel, G. Alternative perovskites for photovoltaics. Adv. Energy Mater. 2018, 8, 1703120.

    Article  CAS  Google Scholar 

  28. Creutz, S. E.; Crites, E. N.; De, Siena, M. C.; Gamelin, D. R. Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: Synthesis and anion exchange to access new materials. Nano Lett. 2018, 18, 1118–1123.

    Article  CAS  Google Scholar 

  29. Bekenstein, Y.; Dahl, J. C.; Huang, J.; Osowiecki, W. T.; Swabeck, J. K.; Chan, E. M.; Yang, P. D.; Alivisatos, A. P. The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions. Nano Lett. 2018, 18, 3502–3508.

    Article  CAS  Google Scholar 

  30. Locardi, F.; Cirignano, M.; Baranov, D.; Dang, Z. Y.; Prato, M.; Drago, F.; Ferretti, M.; Pinchetti, V.; Fanciulli, M.; Brovelli, S. et al. Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals. J. Am. Chem. Soc. 2018, 140, 12989–12995.

    Article  CAS  Google Scholar 

  31. Yang, B.; Hong, F.; Chen, J. S.; Tang, Y. X.; Yang, L.; Sang, Y. B.; Xia, X. S.; Guo, J. W.; He, H. X.; Yang, S. Q. et al. Colloidal synthesis and charge-carrier dynamics of Cs2AgSb1-yBiyX6 (X: Br, Cl; 0 ≤ y ≤1) double perovskite nanocrystals. Angew. Chem., Int. Ed. 2019, 58, 2278–2283.

    Article  CAS  Google Scholar 

  32. Lee, W.; Hong, S.; Kim, S. Colloidal synthesis of lead-free silver- indium double-perovskite Cs2AgInCl6 nanocrystals and their doping with lanthanide ions. J. Phys. Chem. C 2019, 123, 2665–2672.

    Article  CAS  Google Scholar 

  33. Liu, Y.; Jing, Y. Y.; Zhao, J.; Liu, Q. L.; Xia, Z. G. Design optimization of lead-free perovskite Cs2AgInCl6:Bi nanocrystals with 11.4% photoluminescence quantum yield. Chem. Mater. 2019, 31, 3333–3339.

    Article  CAS  Google Scholar 

  34. Dahl, J. C.; Osowiecki, W. T.; Cai, Y.; Swabeck, J. K.; Bekenstein, Y.; Asta, M.; Chan, E. M.; Alivisatos, A. P. Probing the stability and band gaps of Cs2AgInCl6 and Cs2AgSbCl6 lead-free double perovskite nanocrystals. Chem. Mater. 2019, 31, 3134–3143.

    Article  CAS  Google Scholar 

  35. Locardi, F.; Sartori, E.; Buha, J.; Zito, J.; Prato, M.; Pinchetti, V.; Zaffalon, M. L.; Ferretti, M.; Brovelli, S.; Infante, I. et al. Emissive Bi-doped double perovskite Cs2Ag1-xNaxInCl6 nanocrystals. ACS Energy Lett. 2019, 4, 1976–1982.

    Article  CAS  Google Scholar 

  36. Lamba, R. S.; Basera, P.; Bhattacharya, S.; Sapra, S. Band gap engineering in Cs2(NaxAg1-x)BiCl6 double perovskite nanocrystals. J. Phys. Chem. Lett. 2019, 10, 5173–5181.

    Article  CAS  Google Scholar 

  37. Zhou, L.; Xu, Y. F.; Chen, B. X.; Kuang, D. B.; Su, C. Y. Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals. Small 2018, 14, 1703762.

    Article  CAS  Google Scholar 

  38. Kshirsagar, A. S.; Nag, A. Synthesis and optical properties of colloidal Cs2AgSb1-xBixCl6 double perovskite nanocrystals. J. Chem. Phys. 2019, 151, 161101.

    Article  CAS  Google Scholar 

  39. Ip, A. H.; Thon, S. M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Debnath, R.; Levina, L.; Rollny, L. R.; Carey, G. H.; Fischer, A. et al. Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 2012, 7, 577–582.

    Article  CAS  Google Scholar 

  40. Li, J. H.; Xu, L. M.; Wang, T.; Song, J. Z.; Chen, J. W.; Xue, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. N. et al. 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885.

    Article  CAS  Google Scholar 

  41. Kovalenko, M. V.; Scheele, M.; Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 2009, 324, 1417–1420.

    Article  CAS  Google Scholar 

  42. Ahmad, R.; Arora, V.; Srivastava, R.; Sapra, S.; Kamalasanan, M. N. Enhanced performance of organic photovoltaic devices by incorporation of tetrapod-shaped CdSe nanocrystals in polymer-fullerene systems. Phys. Status Solidi A 2013, 210, 785–790.

    Article  CAS  Google Scholar 

  43. Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of a-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.

    Article  CAS  Google Scholar 

  44. Luther, J. M.; Law, M.; Song, Q.; Perkins, C. L.; Beard, M. C; Nozik, A. J. Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. ACS Nano 2008, 2, 271–280.

    Article  CAS  Google Scholar 

  45. Xu, Z. H.; Li, Y.; Li, J. Z.; Pu, C. D.; Zhou, J. H.; Lv, L. L.; Peng, X. G. Formation of size-tunable and nearly monodisperse InP nanocrystals: Chemical reactions and controlled synthesis. Chem. Mater. 2019, 31, 5331–5341.

    Article  CAS  Google Scholar 

  46. Liu, F.; Zhang, Y. H.; Ding, C; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 2017, 11, 10373–10383.

    Article  CAS  Google Scholar 

  47. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    Article  CAS  Google Scholar 

  48. Lu, C; Li, H.; Kolodziejski, K.; Dun, C. C; Huang, W. X.; Carroll, D.; Geyer, S. M. Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Res. 2018, 11, 762–768.

    Article  CAS  Google Scholar 

  49. Li, Y.; Wang, X. Y.; Xue, W. N; Wang, W.; Zhu, W.; Zhao, L. J. Highly luminescent and stable CsPbBr3 perovskite quantum dots modified by phosphine ligands. Nano Res. 2019, 12, 785–789.

    Article  CAS  Google Scholar 

  50. Imran, M.; Caligiuri, V.; Wang, M. J.; Goldoni, L.; Prato, M.; Krahne, R.; De, Trizio, L.; Manna, L. Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J. Am. Chem. Soc. 2018, 140, 2656–2664.

    Article  CAS  Google Scholar 

  51. Ravi, V. K.; Singhal, N; Nag, A. Initiation and future prospects of colloidal metal halide double-perovskite nanocrystals: Cs2AgBiX6(X = Cl, Br, I). J. Mater. Chem. A 2018, 6, 21666–21675.

    Article  CAS  Google Scholar 

  52. Steele, J. A.; Puech, P.; Keshavarz, M.; Yang, R. X.; Banerjee, S.; Debroye, E.; Kim, C. W.; Yuan, H. F.; Heo, N. H.; Vanacken, J. et al. Giant electron-phonon coupling and deep conduction band resonance in metal halide double perovskite. ACS Nano 2018, 12, 8081–8090.

    Article  CAS  Google Scholar 

  53. Zhang, Y. H.; Yin, J.; Parida, M. R.; Ahmed, G. H.; Pan, J.; Bakr, O. M.; Brédas, J. L.; Mohammed, O. F. Direct-indirect nature of the bandgap in lead-free perovskite nanocrystals. J. Phys. Chem. Lett. 2017, 8, 3173–3177.

    Article  CAS  Google Scholar 

  54. Hutter, E. M.; Gélvez-Rueda, M. C.; Osherov, A.; Bulović, V.; Grozema, F. C.; Stranks, S. D.; Savenije, T. J. Direct-indirect character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater. 2017, 16, 115–120.

    Article  CAS  Google Scholar 

  55. Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771.

    Article  CAS  Google Scholar 

  56. Oh, S. J.; Wang, Z. Q.; Berry, N. E.; Choi, J. H.; Zhao, T. S.; Gaulding, E. A.; Paik, T.; Lai, Y. M.; Murray, C. B.; Kagan, C. R. Engineering charge injection and charge transport for high performance PbSe nanocrystal thin film devices and circuits. Nano Lett. 2014, 14, 6210–6216.

    Article  CAS  Google Scholar 

  57. Bernechea, M.; Miller, N. C.; Xercavins, G.; So, D.; Stavrinadis, A.; Konstantatos, G. Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat. Photonics 2016, 10, 521–525.

    Article  CAS  Google Scholar 

  58. Jeon, S.; Ahn, J.; Kim, H.; Woo, H. K.; Bang, J.; Lee, W. S.; Kim, D.; Hossain, A.; Oh, S. J. Investigation of the chemical effect of solvent during ligand exchange on nanocrystal thin films for wearable sensor applications. J. Phys. Chem. C 2019, 123, 11001–11010.

    Article  CAS  Google Scholar 

  59. Ahmad, R.; Srivastava, R.; Bhardwaj, H.; Yadav, S.; Nand, Singh, V.; Chand, S.; Singh, N.; Sapra, S. Size-tunable synthesis of colloidal silver sulfide nanocrystals for solution-processed photovoltaic applications. ChemistrySelect 2018, 3, 5620–5629.

    Article  CAS  Google Scholar 

  60. Ning, Z. J.; Dong, H. P.; Zhang, Q.; Voznyy, O.; Sargent, E. H. Solar cells based on inks of n-type colloidal quantum dots. ACS Nano 2014, 8, 10321–10327.

    Article  CAS  Google Scholar 

  61. Chuang, C. H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.

    Article  CAS  Google Scholar 

  62. Ahmad, R.; Srivastava, R.; Yadav, S.; Singh, D.; Gupta, G.; Chand, S.; Sapra, S. Functionalized molybdenum disulfide nanosheets for 0D-2D hybrid nanostructures: Photoinduced charge transfer and enhanced photoresponse. J. Phys. Chem. Lett. 2017, 8, 1729–1738.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director of the NPL, New Delhi, India for the facility. R. A. gratefully acknowledge the financial support from the Council of Scientific and Industrial Research (CSIR), New Delhi, for the award of RA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Srivastava.

Electronic Supplementary Material

12274_2020_3161_MOESM1_ESM.pdf

Colloidal lead-free Cs2AgBiBr6 double perovskite nanocrystals: Synthesis, uniform thin-film fabrication, and application in solution-processed solar cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, R., Nutan, G.V., Singh, D. et al. Colloidal lead-free Cs2AgBiBr6 double perovskite nanocrystals: Synthesis, uniform thin-film fabrication, and application in solution-processed solar cells. Nano Res. 14, 1126–1134 (2021). https://doi.org/10.1007/s12274-020-3161-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3161-6

Keywords

Navigation