Steen, H.; Mann, M. The abc’s (and xyz’s) of peptide sequencing. Nat. Rev. Mol. Cell Biol. 2004, 5, 699–711.
CAS
Google Scholar
Shimonishi, Y.; Hong, Y. M.; Kitagishi, T.; Matsuo, T.; Matsuda, H.; Katakuse, I. Sequencing of peptide mixtures by edman degradation and field-desorption mass spectrometry. Eur. J. Biochem. 1980, 112, 251–264.
CAS
Google Scholar
Domon, B.; Aebersold, R. Options and considerations when selecting a quantitative proteomics strategy. Nat. Biotechnol. 2010, 28, 710–721.
CAS
Google Scholar
Restrepo-Pérez, L.; Joo, C.; Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 2018, 13, 786–796.
Google Scholar
Ameur, A.; Kloosterman, W. P.; Hestand, M. S. Single-molecule sequencing: Towards clinical applications. Trends Biotechnol. 2019, 37, 72–85.
CAS
Google Scholar
Nivala, J.; Marks, D. B.; Akeson, M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat. Biotechnol. 2013, 31, 247–250.
CAS
Google Scholar
Kennedy, E.; Dong, Z. X.; Tennant, C.; Timp, G. Reading the primary structure of a protein with 0.07 nm3 resolution using a subnanometre-diameter pore. Nat. Nanotechnol. 2016, 11, 968–976.
CAS
Google Scholar
Kolmogorov, M.; Kennedy, E.; Dong, Z. X.; Timp, G.; Pevzner, P. A. Single-molecule protein identification by sub-nanopore sensors. PLoS Comput. Biol. 2017, 13, e1005356.
Google Scholar
Wilson, J.; Sloman, L.; He, Z. R.; Aksimentiev, A. Graphene nanopores for protein sequencing. Adv. Funct. Mater. 2016, 26, 4830–4838.
CAS
Google Scholar
Asandei, A.; Rossini, A. E.; Chinappi, M.; Park, Y.; Luchian, T. Protein nanopore-based discrimination between selected neutral amino acids from polypeptides. Langmuir 2017, 33, 14451–14459.
CAS
Google Scholar
Farimani, A. B.; Heiranian, M.; Aluru, N. R. Identification of amino acids with sensitive nanoporous MoS2: Towards machine learning-based prediction. npj 2D Mater. Appl. 2018, 2, 14.
Google Scholar
Ohayon, S.; Girsault, A.; Nasser, M.; Shen-Orr, S.; Meller, A. Simulation of single-protein nanopore sensing shows feasibility for whole-proteome identification. PLoS Comput. Biol. 2019, 15, e1007067.
CAS
Google Scholar
Rosen, C. B.; Rodriguez-Larrea, D.; Bayley, H. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat. Biotechnol. 2014, 32, 179–181.
CAS
Google Scholar
Van Ginkel, J.; Filius, M.; Szczepaniak, M.; Tulinski, P.; Meyer, A. S.; Joo, C. Single-molecule peptide fingerprinting. Proc. Natl. Acad. Sci. USA 2018, 115, 3338–3343.
CAS
Google Scholar
Zhao, Y. N.; Ashcroft, B.; Zhang, P. M.; Liu, H.; Sen, S. M.; Song, W. S.; Im, J.; Gyarfas, B.; Manna, S.; Biswas, S. et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat. Nanotechnol. 2014, 9, 466–473.
CAS
Google Scholar
Ohshiro, T.; Tsutsui, M.; Yokota, K.; Furuhashi, M.; Taniguchi, M.; Kawai, T. Detection of post-translational modifications in single peptides using electron tunnelling currents. Nat. Nanotechnol. 2014, 9, 835–840.
CAS
Google Scholar
Ouldali, H.; Sarthak, K.; Ensslen, T.; Piguet, F.; Manivet, P.; Pelta, J.; Behrends, J. C.; Aksimentiev, A.; Oukhaled, A. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 2020, 38, 176–181.
CAS
Google Scholar
Swaminathan, J.; Boulgakov, A. A.; Marcotte, E. M. A theoretical justification for single molecule peptide sequencing. PLoS Comput. Biol. 2015, 11, e1004080.
Google Scholar
Venkatesan, B. M.; Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 2011, 6, 615–624.
CAS
Google Scholar
Hu, R.; Tong, X.; Zhao, Q. Four aspects about solid-state nanopores for protein sensing: Fabrication, sensitivity, selectivity, and durability. Adv. Healthc Mater., in press, DOI: https://doi.org/10.1002/adhm.202000933.
Huang, J. A.; Mousavi, M. Z.; Giovannini, G.; Zhao, Y. Q.; Hubarevich, A.; Soler, M. A.; Rocchia, W.; Garoli, D.; De Angelis, F. Multiplexed discrimination of single amino acid residues in polypeptides in a single SERS hot spot. Angew. Chem., Int. Ed. 2020, 59, 11423–11431.
CAS
Google Scholar
Sheinerman, F. B.; Norel, R.; Honig, B. Electrostatic aspects of protein-protein interactions. Curr. Opin. Struct. Biol. 2000, 10, 153–159.
CAS
Google Scholar
Cao, C.; Long, Y. T. Biological nanopores: Confined spaces for electrochemical single-molecule analysis. Acc. Chem. Res. 2018, 51, 331–341.
CAS
Google Scholar
Lee, B.; Richards, F. M. The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol. 1971, 55, 379–400, IN3-IN4.
CAS
Google Scholar
Honig, B.; Nicholls, A. Classical electrostatics in biology and chemistry. Science 1995, 268, 1144–1149.
CAS
Google Scholar
Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford University Press: Oxford, 2017.
Google Scholar
Angelucci, F.; Miele, A. E.; Ardini, M.; Boumis, G.; Saccoccia, F.; Bellelli, A. Typical 2-Cys peroxiredoxins in human parasites: Several physiological roles for a potential chemotherapy target. Mol. Biochem. Parasitol. 2016, 206, 2–12.
CAS
Google Scholar
Wang, H. Y.; Li, Y.; Qin, L. X.; Heyman, A.; Shoseyov, O.; Willner, I.; Long, Y. T.; Tian, H. Single-molecule DNA detection using a novel SP1 protein nanopore. Chem. Commun. 2013, 49, 1741–1743.
CAS
Google Scholar
Ying, Y. L.; Cao, C.; Long, Y. T. Single molecule analysis by biological nanopore sensors. Analyst 2014, 139, 3826–3835.
CAS
Google Scholar
Giovannini, G.; Ardini, M.; Maccaferri, N.; Zambrana-Puyalto, X.; Panella, G.; Angelucci, F.; Ippoliti, R.; Garoli, D.; De Angelis, F. Bioassisted tailored synthesis of plasmonic silver nanorings and site-selective deposition on graphene arrays. Adv. Opt. Mater. 2020, 8, 1901583.
CAS
Google Scholar
Asandei, A.; Chinappi, M.; Lee, J. K.; Seo, C. H.; Mereuta, L.; Park, Y.; Luchian, T. Placement of oppositely charged aminoacids at a polypeptide termini determines the voltage-controlled braking of polymer transport through nanometer-scale pores. Sci. Rep. 2015, 5, 10419.
CAS
Google Scholar
Restrepo-Pérez, L.; John, S.; Aksimentiev, A.; Joo, C.; Dekker, C. SDS-assisted protein transport through solid-state nanopores. Nanoscale 2017, 9, 11685–11693.
Google Scholar
Cressiot, B.; Braselmann, E.; Oukhaled, A.; Elcock, A. H.; Pelta, J.; Clark, P. L. Dynamics and energy contributions for transport of unfolded pertactin through a protein nanopore. ACS Nano 2015, 9, 9050–9061.
CAS
Google Scholar
Chinappi, M.; Luchian, T.; Cecconi, F. Nanopore tweezers: Voltage-controlled trapping and releasing of analytes. Phys. Rev. E 2015, 92, 032714.
Google Scholar
Pastoriza-Gallego, M.; Breton, M. F.; Discala, F.; Auvray, L.; Betton, J. M.; Pelta, J. Evidence of unfolded protein translocation through a protein nanopore. ACS Nano 2014, 8, 11350–11360.
CAS
Google Scholar
Kim, H. J.; Choi, U. J.; Kim, H.; Lee, K.; Park, K. B.; Kim, H. M.; Chi, S. W.; Lee, J. S.; Kim, K. B. Translocation of DNA and protein through a sequentially polymerized polyurea nanopore. Nanoscale 2019, 11, 444–453.
CAS
Google Scholar
Mereuta, L.; Roy, M.; Asandei, A.; Lee, J. K.; Park, Y.; Andricioaei, I.; Luchian, T. Slowing down single-molecule trafficking through a protein nanopore reveals intermediates for peptide translocation. Sci. Rep. 2014, 4, 3885.
Google Scholar
Plesa, C.; Kowalczyk, S. W.; Zinsmeester, R.; Grosberg, A. Y.; Rabin, Y.; Dekker, C. Fast translocation of proteins through solid state nanopores. Nano Lett. 2013, 13, 658–663.
CAS
Google Scholar
Rodriguez-Larrea, D.; Bayley, H. Multistep protein unfolding during nanopore translocation. Nat. Nanotechnol. 2013, 8, 288–295.
CAS
Google Scholar
Ayub, M.; Bayley, H. Engineered transmembrane pores. Curr. Opin. Chem. Biol. 2016, 34, 117–126.
CAS
Google Scholar
Roy, R.; Hohng, S.; Ha, T. A practical guide to single-molecule FRET. Nat. Methods 2008, 5, 507–516.
CAS
Google Scholar
Dimura, M.; Peulen, T. O.; Hanke, C. A.; Prakash, A.; Gohlke, H.; Seidel, C. A. M. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr. Opin. Struct. Biol. 2016, 40, 163–185.
CAS
Google Scholar
Hoefling, M.; Grubmüller, H. In silico FRET from simulated dye dynamics. Comput. Phys. Commun. 2013, 184, 841–852.
CAS
Google Scholar