Skip to main content
Log in

Light-responsive color switching of self-doped TiO2−x/WO3·0.33H2O hetero-nanoparticles for highly efficient rewritable paper

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Smart materials that reversibly change color upon light illumination are widely explored for diverse appealing applications. However, light-responsive color switching materials are mainly limited to organic molecules. The synthesis of inorganic counterparts has remained a significant challenge because of their slow light response and poor reversibility. Here, we report a seeded growth strategy for the synthesis of TiO2−x/WO3·0.33H2O hetero-nanoparticles (HNPs) with networked wire-like structure of ∼ 10 nm in diameters that enable the highly reversible light-responsive color switching properties. For the TiO2−x/WO3·0.33H2O HNPs, Ti3+ species self-doped in TiO2−x nanoparticles (NPs) act as efficient sacrificial electron donors (SEDs) and Ti-O-W linkages formed between TiO2−x and WO3·0.33H2O NPs ensure the nanoscale interfacial contact, endowing the HNPs enhanced photoreductive activity and efficient interfacial charge transfer upon ultraviolet (UV) illumination to achieve highly efficient color switching. The TiO2−x/WO3·0.33H2O HNPs exhibits rapid light response (< 15 s) and long reversible color switching cycles (> 180 times). We further demonstrate the applications of TiO2−x/WO3·0.33H2O HNPs in ink-free, light-printable rewritable paper that can be written on freehand or printed on through a photomask using UV light. This work opens an avenue for designing inorganic light-responsive color switching nanomaterials and their smart applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jia, C. C.; Migliore, A.; Xin, N.; Huang, S. Y.; Wang, J. Y.; Yang, Q.; Wang, S. P.; Chen, H. L.; Wang, D. M.; Feng, B. Y. et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 2016, 352, 1443–1445.

    CAS  Google Scholar 

  2. Kundu, P. K.; Samanta, D.; Leizrowice, R.; Margulis, B.; Zhao, H.; Börner, M.; Udayabhaskararao, T.; Manna, D.; Klajn, R. Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat. Chem. 2015, 7, 646–652.

    CAS  Google Scholar 

  3. Li, Z. Q.; Wang, G. N.; Ye, Y. X.; Li, B.; Li, H. R.; Chen, B. L. Loading photochromic molecules into a luminescent metal-organic framework for information anticounterfeiting. Angew. Chem., Int. Ed. 2019, 58, 18025–18031.

    CAS  Google Scholar 

  4. Khazi, M. I.; Jeong, W.; Kim, J. M. Functional materials and systems for rewritable paper. Adv. Mater. 2018, 30, 1705310.

    Google Scholar 

  5. Wang, W. S.; Xie, N.; He, L.; Yin, Y. D. Photocatalytic colour switching of redox dyes for ink-free light-printable rewritable paper. Nat. Commun. 2014, 5, 5459.

    CAS  Google Scholar 

  6. Yang, Y. Q.; Li, J. Q.; Li, X. Y.; Guan, L.; Gao, Z. J.; Duan, L. J.; Jia, F.; Gao, G. H. Easily prepared and reusable films for fast-response rewritable light printing. ACS Appl. Mater. Interfaces 2019, 11, 14322–14328.

    CAS  Google Scholar 

  7. Fihey, A.; Perrier, A.; Browne, W. R.; Jacquemin, D. Multiphotochromic molecular systems. Chem. Soc. Rev. 2015, 44, 3719–3759.

    CAS  Google Scholar 

  8. Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. Chem. Rev. 2014, 114, 12174–12277.

    CAS  Google Scholar 

  9. Huang, G. X.; Xia, Q.; Huang, W. B.; Tian, J. W.; He, Z. K.; Li, B. S.; Tang, B. Z. Multiple anti-counterfeiting guarantees from a simple tetraphenylethylene derivative-high-contrasted and multi-state mechanochromism and photochromism. Angew. Chem., Int. Ed. 2019, 58, 17814–17819.

    CAS  Google Scholar 

  10. Wang, W. S.; Liu, L. T.; Feng, J.; Yin, Y. D. Photocatalytic reversible color switching based on titania nanoparticles. Small Methods 2018, 2, 1700273.

    Google Scholar 

  11. Gu, H. X.; Guo, C. S.; Zhang, S. H.; Bi, L. H.; Li, T. C.; Sun, T. D.; Liu, S. Q. Highly efficient, near-infrared and visible light modulated electrochromic devices based on polyoxometalates and W18O49 nanowires. ACS Nano 2018, 12, 559–567.

    CAS  Google Scholar 

  12. Zhao, J. X.; Tian, Y. Y.; Wang, Z.; Cong, S.; Zhou, D.; Zhang, Q. Z.; Yang, M.; Zhang, W. K.; Geng, F. X.; Zhao, Z. G. Trace H2O2-assisted high-capacity tungsten oxide electrochromic batteries with ultrafast charging in seconds. Angew. Chem., Int. Ed. 2016, 55, 7161–7165.

    CAS  Google Scholar 

  13. Santos, L.; Wojcik, P.; Pinto, J. V.; Elangovan, E.; Viegas, J.; Pereira, L.; Martins, R.; Fortunato, E. Structure and morphologic influence of WO3 nanoparticles on the electrochromic performance of dualphase a-WO3/WO3 inkjet printed films. Adv. Electron. Mater. 2015, 1, 1400002.

    Google Scholar 

  14. Yamazaki, S.; Ishida, H.; Shimizu, D.; Adachi, K. Photochromic properties of tungsten oxide/methylcellulose composite film containing dispersing agents. ACS Appl. Mater. Interfaces 2015, 7, 26326–26332.

    CAS  Google Scholar 

  15. Dong, J.; Zhang, J. P. Photochromic and super anti-wetting coatings based on natural nanoclays. J. Mater. Chem. A 2019, 7, 3120–3127.

    CAS  Google Scholar 

  16. Yamazaki, S.; Shimizu, D.; Tani, S.; Honda, K.; Sumimoto, M.; Komaguchi, K. Effect of dispersants on photochromic behavior of tungsten oxide nanoparticles in methylcellulose. ACS Appl. Mater. Interfaces 2018, 10, 19889–19896.

    CAS  Google Scholar 

  17. Wen, R. T.; Granqvist, C. G.; Niklasson, G. A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nat. Mater. 2015, 14, 996–1001.

    CAS  Google Scholar 

  18. Azam, A.; Kim, J.; Park, J.; Novak, T. G.; Tiwari, A. P.; Song, S. H.; Kim, B.; Jeon, S. Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices. Nano Lett. 2018, 18, 5646–5651.

    CAS  Google Scholar 

  19. Wei, J.; Jiao, X. L.; Wang, T.; Chen, D. R. Electrospun photochromic hybrid membranes for flexible rewritable media. ACS Appl. Mater. Interfaces 2016, 8, 29713–29720.

    CAS  Google Scholar 

  20. Wang, S. F.; Fan, W. R.; Liu, Z. C.; Yu, A. B.; Jiang, X. C. Advances on tungsten oxide based photochromic materials: Strategies to improve their photochromic properties. J. Mater. Chem. C 2018, 6, 191–212.

    CAS  Google Scholar 

  21. Lou, Z. Z.; Zhang, P.; Li, J.; Yang, X. G.; Huang, B. B.; Li, B. J. Plasmonic heterostructure TiO2-MCs/WO3−x-NWs with continuous photoelectron injection boosting hot electron for methane generation. Adv. Funct. Mater. 2019, 29, 1808696.

    Google Scholar 

  22. Khan, H.; Rigamonti, M. G.; Patience, G. S.; Boffito, D. C. Spray dried TiO2/WO3 heterostructure for photocatalytic applications with residual activity in the dark. Appl. Catal. B 2018, 226, 311–323.

    CAS  Google Scholar 

  23. Grandcolas, M.; Cottineau, T.; Louvet, A.; Keller, N.; Keller, V. Solar light-activated photocatalytic degradation of gas phase diethylsulfide on WO3-modified TiO2 nanotubes. Appl. Catal. B 2013, 138–139, 128–140.

    Google Scholar 

  24. Nolan, M.; Iwaszuk, A.; Lucid, A. K.; Carey, J. J.; Fronzi, M. Design of novel visible light active photocatalyst materials: Surface modified TiO2. Adv. Mater. 2016, 28, 5425–5446.

    CAS  Google Scholar 

  25. Xi, G.; Sheng, L.; Du, J. H.; Zhang, J. Y.; Li, M. J.; Wang, H. Z.; Ma, Y. F.; Zhang, S. X. A. Water assisted biomimetic synergistic process and its application in water-jet rewritable paper. Nat. Commun. 2018, 9, 4819.

    Google Scholar 

  26. Sun, H. B.; Liu, S. J.; Lin, W. P.; Zhang, K. Y.; Lv, W.; Huang, X.; Huo, F. W.; Yang, H. R.; Jenkins, G.; Zhao, Q. et al. Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun. 2014, 5, 3601.

    Google Scholar 

  27. Sheng, L.; Li, M. J.; Zhu, S. Y.; Li, H.; Xi, G.; Li, Y. G.; Wang, Y.; Li, Q. S.; Liang, S. J.; Zhong, K. et al. Hydrochromic molecular switches for water-jet rewritable paper. Nat. Commun. 2014, 5, 3044.

    Google Scholar 

  28. Ma, Y.; She, P. F.; Zhang, K. Y.; Yang, H. R.; Qin, Y. Y.; Xu, Z. H.; Liu, S. J.; Zhao, Q.; Huang, W. Dynamic metal-ligand coordination for multicolour and water-jet rewritable paper. Nat. Commun. 2018, 9, 3.

    Google Scholar 

  29. Gao, Z. P.; Liu, L. T.; Tian, Z.; Feng, Z. Y.; Jiang, B. L.; Wang, W. S. Fast-response flexible photochromic gels for self-erasing rewritable media and colorimetric oxygen indicator applications. ACS Appl. Mater. Interfaces 2018, 10, 33423–33433.

    CAS  Google Scholar 

  30. Liu, B. X.; Wang, J. S.; Wu, J. S.; Li, H. Y.; Wang, H.; Li, Z. F.; Zhou, M. L.; Zuo, T. Y. Proton exchange growth to mesoporous WO3·0.33H2O structure with highly photochromic sensitivity. Mater. Lett. 2013, 91, 334–337.

    CAS  Google Scholar 

  31. Song, X. N.; Wang, C. Y.; Wang, W. K.; Zhang, X.; Hou, N. N.; Yu, H. Q. A dissolution-regeneration route to synthesize blue tungsten oxide flowers and their applications in photocatalysis and gas sensing. Adv. Mater. Interfaces 2016, 3, 1500417.

    Google Scholar 

  32. Yang, K. W.; Chen, X. Y.; Zheng, Z. H.; Wan, J. Q.; Feng, M.; Yu, Y. Solvent-induced surface disorder and doping-induced lattice distortion in anatase TiO2 nanocrystals for enhanced photoreversible color switching. J. Mater. Chem. A 2019, 7, 3863–3873.

    CAS  Google Scholar 

  33. Wang, X. G.; Sun, M. H.; Murugananthan, M.; Zhang, Y. R.; Zhang, L. Z. Electrochemically self-doped WO3/TiO2 nanotubes for photo-catalytic degradation of volatile organic compounds. Appl. Catal. B 2020, 260, 118205.

    CAS  Google Scholar 

  34. Yang, P. H.; Sun, P.; Chai, Z. S.; Huang, L. H.; Cai, X.; Tan, S. Z.; Song, J. H.; Mai, W. J. Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage. Angew. Chem., Int. Ed. 2014, 53, 11935–11939.

    CAS  Google Scholar 

  35. Wang, S. B.; Pan, L.; Song, J. J.; Mi, W. B.; Zou, J. J.; Wang, L.; Zhang, X. W. Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J. Am. Chem. Soc. 2015, 137, 2975–2983.

    CAS  Google Scholar 

  36. Yao, Z. J.; Yin, H. Y.; Zhou, L. M.; Pan, G. X.; Wang, Y. D.; Xia, X. H.; Wu, J. B.; Wang, X. L.; Tu, J. P. Ti3+ self-doped Li4Ti5O12 anchored on N-doped carbon nanofiber arrays for ultrafast lithium-ion storage. Small 2019, 15, 1905296.

    CAS  Google Scholar 

  37. Hanson, G. R.; Wilson, G. L.; Bailey, T. D.; Pilbrow, J. R.; Wedd, A. G. Multifrequency electron spin resonance of molybdenum(V) and tungsten(V) compounds. J. Am. Chem. Soc. 1987, 109, 2609–2616.

    CAS  Google Scholar 

  38. Jiang, C. H.; Li, Y. S.; Wang, S. T.; Zhang, Z. T.; Tang, Z. L. Hierarchical hydrated WO3·0.33H2O/graphene composites with improved lithium storage. Electrochim. Acta 2018, 278, 290–301.

    CAS  Google Scholar 

  39. Tribalis, A.; Panagiotou, G. D.; Tsilomelekis, G.; Kalampounias, A. G.; Bourikas, K.; Kordulis, C.; Boghosian, S.; Lycourghiotis, A. Temperature-dependent evolution of the molecular configuration of oxo-tungsten(VI) species deposited on the surface of titania. J. Phys. Chem. C 2014, 118, 11319–11332.

    CAS  Google Scholar 

  40. Fricke, R.; Jerschkewitz, H. G.; Öhlmann, G. Electron spin resonance studies of free and supported 12-heteropoly acids. Part 6.-The investigation of reduced H4(SiW12O40xH2O and Ag4(SiW12O40xH2O and Ag4(SiW12O40)·x H2O and the effects of oxygen adsorption. J. Chem. Soc. Faraday Trans. 1 1987, 83, 3115–3128.

    CAS  Google Scholar 

  41. Wang, G.; Chen, Q. H.; Xin, Y. J.; Liu, Y. P.; Zang, Z. L.; Hu, C. G.; Zhang, B. Construction of graphene-WO3/TiO2 nanotube array photoelectrodes and its enhanced performance for photocatalytic degradation of dimethyl phthalate. Electrochim. Acta 2016, 222, 1903–1913.

    CAS  Google Scholar 

  42. Peng, Y.; Si, W. Z.; Li, X.; Luo, J. M.; Li, J. H.; Crittenden, J.; Hao, J. M. Comparison of MoO3 and WO3 on arsenic poisoning V2O5/TiO2 catalyst: DRIFTS and DFT study. Appl. Catal. B 2016, 181, 692–698.

    CAS  Google Scholar 

  43. Ma, Y. J.; Hu, J. X.; Han, S. D.; Pan, J.; Li, J. H.; Wang, G. M. Photochromism and photomagnetism in crystalline hybrid materials actuated by nonphotochromic units. Chem. Commun. 2019, 55, 5631–5634.

    CAS  Google Scholar 

  44. Shi, Y. X.; Zhang, W. H.; Abrahams, B. F.; Braunstein, P.; Lang, J. P. Fabrication of photoactuators: Macroscopic photomechanical responses of metal-organic frameworks to irradiation by UV light. Angew. Chem., Int. Ed. 2019, 58, 9453–9458.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (No. ZR2019JQ15) and the National Natural Science Foundation of China (Nos. 21671120 and 51972199). We would like to thank the Analytical Center for Structural Constituent and Physical Property of Core Facilities Sharing Platform, Shandong University for ESR and Raman characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenshou Wang.

Electronic Supplementary Material

12274_2020_3061_MOESM1_ESM.pdf

Light-responsive color switching of self-doped TiO2−x/WO3·0.33H2O hetero-nanoparticles for highly efficient rewritable paper

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Liu, L., Zhang, Y. et al. Light-responsive color switching of self-doped TiO2−x/WO3·0.33H2O hetero-nanoparticles for highly efficient rewritable paper. Nano Res. 14, 165–171 (2021). https://doi.org/10.1007/s12274-020-3061-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3061-9

Keywords

Navigation