Skip to main content
Log in

Vapor deposition of aluminium oxide into N-rich mesoporous carbon framework as a reversible sulfur host for lithium-sulfur battery cathode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Restraining the shuttle effects of lithium polysulfides is the key to improve the cycling reversibility and stability of lithium-sulfur (Li-S) batteries for which design of robust sulfur hosts has been regarded as the most effective strategy. In this work, we report a new type of hybrid sulfur host which is composed of Al2O3 homogenously decorated in nitrogen-rich mesoporous carbon framework (NMC-Al2O3). The NMC-Al2O3 hybrid host features a poly-dispersed spherical morphology and a mesoporous configuration with high surface area and large pore volume that can accommodate a high sulfur content up to 73.5 wt.%. As a result, the fabricated NMC-Al2O3-S cathode exhibits all-round improvements in electrochemical properties in term of capacities (1,212 mAh·g−1 at 0.2 C; 755 mAh·g−1 at 2 C), cycling charge-discharge reversibility (sustainably 100% efficiencies) and stability (1,000 cycles with only 0.023% capacity decay per cycle at 0.5 C). By contrast, the Al2O3-free NMC-S cathode shows both decreased capacities and rapidly descending Coulombic efficiencies during cycling. Density functional theory (DFT) calculations further reveal that the implanted Al2O3 can greatly enhance the chemical adsorption and catalytic conversion for various lithium polysulfides and thereby effectively prevent the polysulfide shuttling and significantly improve the utilizability, reversibility and stability of sulfur cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

    CAS  Google Scholar 

  2. Ji, X. L.; Lee K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    CAS  Google Scholar 

  3. Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

    CAS  Google Scholar 

  4. Xu, Z. L.; Kim, J. K.; Kang, K. Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 2018, 19, 84–107.

    CAS  Google Scholar 

  5. Wang, Y. Z.; Huang, X. X.; Zhang, S. Q.; Hou, Y. L. Sulfur hosts against the shuttle effect. Small Methods 2018, 2, 1700345.

    Google Scholar 

  6. Bruce, P. G.; Freunberger, S. A.; Hardwick L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    CAS  Google Scholar 

  7. Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

    CAS  Google Scholar 

  8. Liu, D. H.; Zhang, C.; Zhou, G. M.; Lv, W.; Ling, G. W.; Zhi L. J.; Yang, Q. H. Catalytic effects in lithium-sulfur batteries: Promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 2018, 5, 1700270.

    Google Scholar 

  9. Zhang, J.; Huang, H.; Bae, J.; Chung, S. H.; Zhang, W. K.; Manthiram, A.; Yu, G. Nanostructured host materials for trapping sulfur in rechargeable Li-S batteries: Structure design and interfacial chemistry. Small Methods 2018, 2, 1700279.

    Google Scholar 

  10. Zhang, Z. W.; Li, Z. Q.; Hao, F. B.; Wang, X. K.; Li, Q.; Qi, Y. X.; Fan, R. H.; Yin, L. W. 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium-sulfur batteries with high rate capability and cycling stability. Adv. Funct. Mater. 2014, 24, 2500–2509.

    CAS  Google Scholar 

  11. Tao, X. Y.; Chen, X. R.; Xia, Y.; Huang, H.; Gan, Y. P.; Wu, R.; Chen, F.; Zhang, W. K. Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free pechini method for advanced lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 3295–3301.

    CAS  Google Scholar 

  12. Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. Highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries. ACS Nano 2014, 8, 9295–9303.

    CAS  Google Scholar 

  13. Lee, J. T.; Zhao, Y. Y.; Thieme, S.; Kim, H.; Oschatz, M.; Borchardt, L.; Magasinski, A.; Cho, W. I.; Kaskel, S.; Yushin, G. Sulfur-infiltrated micro- and mesoporous silicon carbide-derived carbon cathode for high-performance lithium sulfur batteries. Adv. Mater. 2013, 25, 4573–4579.

    CAS  Google Scholar 

  14. Lyu, Z. Y.; Xu, D.; Yang, L. J.; Che, R. C.; Feng, R.; Zhao, J.; Li, Y.; Wu, Q; Wang, X. Z.; Hu, Z. Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium-sulfur batteries. Nano Energy 2015, 12, 657–665.

    CAS  Google Scholar 

  15. Tang, C.; Li, B. Q.; Zhang, Q.; Zhu, L.; Wang, H. F.; Shi, J. L.; Wei, F. CaO-templated growth of hierarchical porous graphene for highpower lithium-sulfur battery applications. Adv. Funct. Mater. 2016, 26, 577–585.

    CAS  Google Scholar 

  16. Shi, J. L.; Peng, H. J.; Zhu, L.; Zhu, W. C.; Zhang, Q. Template growth of porous graphene microspheres on layered double oxide catalysts and their applications in lithium-sulfur batteries. Carbon 2015, 92, 96–105.

    CAS  Google Scholar 

  17. Zhang, X. Q.; He, B.; Li, W. C.; Lu, A. H. Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res. 2018, 11, 1238–1246.

    CAS  Google Scholar 

  18. Lu, S. T.; Cheng, Y. W.; Wu, X. H.; Liu, J. Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers. Nano Lett. 2013, 13, 2485–2489.

    CAS  Google Scholar 

  19. Ding, Y. L.; Kopold, P.; Hahn, K.; van Aken, P. A.; Maier, J.; Yu, Y. Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube-graphene hybrid architectures for lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 1112–1119.

    CAS  Google Scholar 

  20. Tang, C.; Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Cheng, X. B.; Tian, G. L.; Peng, H. J.; Wei, F. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: Facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv. Mater. 2014, 26, 6100–6105.

    CAS  Google Scholar 

  21. Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H. et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014, 14, 4821–4827.

    CAS  Google Scholar 

  22. Chen, R. J.; Zhao, T.; Lu, J.; Wu, F.; Li, L.; Chen, J. Z.; Tan, G. Q.; Ye, Y. S.; Amine, K. Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. Nano Lett. 2013, 13, 4642–4649.

    CAS  Google Scholar 

  23. Wang, H. L.; Robinson, J. T.; Diankov, G.; Dai, H. J. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 2010, 132, 3270–3271.

    CAS  Google Scholar 

  24. Song, J. X.; Xu, T.; Gordin, M. L.; Zhu, P. Y.; Lv, D. P.; Jiang, Y. B.; Chen, Y. S.; Duan, Y. H.; Wang, D. H. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 1243–1250.

    CAS  Google Scholar 

  25. Song, J. X.; Gordin, M. L.; Xu, T.; Chen, S. R.; Yu, Z. X.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y. H.; Wang, D. H. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew. Chem., Int. Ed. 2015, 54, 4325–4329.

    CAS  Google Scholar 

  26. Ma, L. B.; Chen, R. P.; Zhu, G Y.; Hu, Y.; Wang, Y. R.; Chen, T.; Liu, J.; Jin, Z. Cerium oxide nanocrystal embedded bimodal micromesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium-sulfur batteries. ACS Nano 2017, 11, 7274–7283.

    CAS  Google Scholar 

  27. Zheng, C.; Niu, S. Z.; Lv, W.; Zhou, G. M.; Li, J.; Fan, S. X.; Deng, Y. Q.; Pan, Z. Z.; Li, B. H.; Kang, F. Y. et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries. Nano Energy 2017, 33, 306–312.

    CAS  Google Scholar 

  28. Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 2014, 5, 4759.

    CAS  Google Scholar 

  29. Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

    CAS  Google Scholar 

  30. Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519–527.

    CAS  Google Scholar 

  31. Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

    Google Scholar 

  32. Tao, Y. Q.; Wei, Y. J.; Liu, Y.; Wang, J. T.; Qiao, W. M.; Ling, L. C.; Long, D. H. Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium-sulfur battery. Energy Environ. Sci. 2016, 9, 3230–3239.

    CAS  Google Scholar 

  33. Park, G. D.; Lee, J.; Piao, Y. Z.; Kang, Y. C. Mesoporous graphitic carbon-TiO2 composite microspheres produced by a pilot-scale spray-drying process as an efficient sulfur host material for Li-S batteries. Chem. Eng. J. 2018, 335, 600–611.

    CAS  Google Scholar 

  34. Li, Z.; Zhang, J. T.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 12886–12890.

    CAS  Google Scholar 

  35. Chen, M. F.; Lu, Q.; Jiang, S. X.; Huang, C.; Wang, X. Y.; Wu, B.; Xiang, K. X.; Wu, Y. T. MnO2 nanosheets grown on the internal/external surface of N-doped hollow porous carbon nanospheres as the sulfur host of advanced lithium-sulfur batteries. Chem. Eng. J. 2018, 335, 831–842.

    CAS  Google Scholar 

  36. Carter, R.; Oakes, L.; Muralidharan, N.; Cohn, A. P.; Douglas, A.; Pint, C. L. Polysulfide anchoring mechanism revealed by atomic layer deposition of V2O5 and sulfur-filled carbon nanotubes for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 7185–7192.

    CAS  Google Scholar 

  37. Wang, X. L.; Li, G.; Li, J. D.; Zhang, Y. N.; Wook, A.; Yu, A. P.; Chen, Z. W. Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 2533–2538.

    CAS  Google Scholar 

  38. Babu, G; Ababtain, K.; Ng, K. Y. S.; Arava, L. M. R. Electrocatalysis of lithium polysulfides: Current collectors as electrodes in Li/S battery configuration. Sci. Rep. 2015, 5, 8763.

    CAS  Google Scholar 

  39. Ousmane, I. A. M.; Li, R.; Wang, C.; Li, G. R.; Cai, W. L.; Liu, B. H.; Li, Z. P. Fabrication of oriented-macroporous-carbon incorporated with γ-Al2O3 for high performance lithium-sulfur battery. Microporous Mesoporous Mater. 2018, 266, 276–282.

    CAS  Google Scholar 

  40. Sun, F.; Gao, J. H.; Pi, X. X.; Wang, L. J.; Yang, Y. Q.; Qu, Z. B.; Wu, S. H. High performance aqueous supercapacitor based on highly nitrogen-doped carbon nanospheres with unimodal mesoporosity. J. Power Sources 2017, 337, 189–196.

    CAS  Google Scholar 

  41. Han, R.; Gao, J. H.; Wei, S. Y.; Su, Y. L.; Qin, Y. K. Development of highly effective CaO@Al2O3 with hierarchical architecture CO2 sorbents via a scalable limited-space chemical vapor deposition technique. J. Mater. Chem. A 2018, 6, 3462–3470.

    CAS  Google Scholar 

  42. He, H. Y.; Alberti, K.; Barr, T. L.; Klinowski, J. Esca studies of aluminophosphate molecular sieves. J. Phys. Chem. 1993, 97, 13703–13707.

    CAS  Google Scholar 

  43. Yuan, H.; Peng, H. J.; Li, B. Q.; Xie, J.; Kong, L.; Zhao, M.; Chen, X.; Huang, J. Q.; Zhang, Q. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1802768.

    Google Scholar 

  44. Li, S. Z.; Zhang, H. L.; Chen, W. R.; Zou, Y. L.; Yang, H. Q.; Yang, J. B.; Peng, C. Toward commercially viable Li-S batteries: Overall performance improvements enabled by a multipurpose interlayer of hyperbranched polymer-grafted carbon nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 25767–25774.

    CAS  Google Scholar 

  45. Zhao, M.; Peng, H. J.; Zhang, Z. W.; Li, B. Q.; Chen, X.; Xie, J.; Chen, X.; Wei, J. Y.; Zhang, Q.; Huang, J. Q. Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal. Angew. Chem., Int. Ed. 2019, 58, 3779–3783.

    CAS  Google Scholar 

  46. Liang, X.; Rangom, Y.; Kwok, C. Y.; Pang, Q.; Nazar, L. F. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 2017, 29, 1603040.

    Google Scholar 

  47. He, B.; Li, W. C.; Yang, C.; Wang S. Q.; Lu, A. H. Incorporating sulfur inside the pores of carbons for advanced lithium-sulfur batteries: An electrolysis approach. ACS Nano 2016, 10, 1633–1639.

    CAS  Google Scholar 

  48. Niu, S. Z.; Lv, W.; Zhang, C.; Shi, Y. T.; Zhao, J. F.; Li, B. H.; Yang, Q. H.; Kang, F. Y. One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithium-sulfur batteries. J. Power Sources 2015, 295, 182–189.

    CAS  Google Scholar 

  49. Li, X. L.; Chu, L. B.; Wang, Y. Y.; Pan, L. S. Anchoring function for polysulfide ions of ultrasmall SnS2 in hollow carbon nanospheres for high performance lithium-sulfur batteries. Mater. Sci. Eng. B 2016, 205, 46–54.

    CAS  Google Scholar 

  50. Ji, X. L.; Evers, S.; Black, R.; Nazar, L. F. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2011, 2, 325.

    Google Scholar 

  51. Yu, M. P.; Ma, J. S.; Song, H. Q.; Wang, A. J.; Tian, F. Y.; Wang, Y. S.; Qiu, H.; Wang, R. M. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 1495–1503.

    CAS  Google Scholar 

  52. Han, X. G; Xu, Y. H.; Chen, X. Y.; Chen, Y. C.; Weadock, N.; Wan, J. Y.; Zhu, H. L.; Liu, Y. L.; Li, H. Q.; Rubloff, G. et al. Reactivation of dissolved polysulfides in Li-S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth. Nano Energy 2013, 2, 1197–1206.

    CAS  Google Scholar 

  53. Cui, Z. M.; Zu, C. X.; Zhou, W. D.; Manthiram, A.; Goodenough, J. B. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 2016, 28, 6926–6931.

    CAS  Google Scholar 

  54. Song, J. X.; Xu, T.; Gordin, M. L.; Zhu, P. Y.; Lv, D. P.; Jiang, Y. B.; Chen, Y. S.; Duan, Y. H.; Wang, D. H. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 1243–1250.

    CAS  Google Scholar 

  55. Mo, Y. X.; Lin, J. X.; Wu, Y. J.; Yin, Z. W.; Lu, Y. Q.; Li, J. T.; Zhou, Y.; Sheng, T.; Huang, L.; Sun, S. G. Core-shell structured S@Co(OH)2 with a carbon-nanofiber interlayer: A conductive cathode with suppressed shuttling effect for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 4065–4073.

    CAS  Google Scholar 

  56. Zhou, G. M.; Zhao, S. Y.; Wang, T. S.; Yang, S. Z.; Johannessen, B.; Chen, H.; Liu, C. W.; Ye, Y. S.; Wu, Y. C.; Peng, Y. C. et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries. Nano Lett. 2020, 20, 1252–1261.

    CAS  Google Scholar 

  57. Ding, X. W.; Yang, S.; Zhou, S. Y.; Zhan, Y. X.; Lai, Y. C.; Zhou, X. M.; Xu, X. J.; Nie, H. G.; Huang, S. M.; Yang, Z. Biomimetic molecule catalysts to promote the conversion of polysulfides for advanced lithium-sulfur batteries. Adv. Funct. Mater., in press, DOI: https://doi.org/10.1002/adfm.202003354.

  58. Yu, Z.; Wang, B. L.; Liao, X. B.; Zhao, K. N.; Yang, Z. F.; Xia, F. J.; Sun, C. L.; Wang, Z.; Fan, C. Y.; Zhang, J. P. et al. G. Boosting polysulfide redox kinetics by graphene-supported Ni nanoparticles with carbon coating. Adv. Energy Mater. 2020, 10, 2000907.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Open Project of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University (No. 2018-13K) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Sun or Yunfeng Lu.

Electronic Supplementary Material

12274_2020_3055_MOESM1_ESM.pdf

Vapor deposition of aluminium oxide into N-rich mesoporous carbon framework as a reversible sulfur host for lithium-sulfur battery cathode

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, F., Qu, Z., Wang, H. et al. Vapor deposition of aluminium oxide into N-rich mesoporous carbon framework as a reversible sulfur host for lithium-sulfur battery cathode. Nano Res. 14, 131–138 (2021). https://doi.org/10.1007/s12274-020-3055-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3055-7

Keywords

Navigation