Skip to main content
Log in

Carbon-based nanozymes for biomedical applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanozymes are nanomaterials with enzyme-like properties that have attracted significant interest owing to their capability to address the limitations of traditional enzymes such as fragility, high cost, and impossible mass production. Over the past decade, a broad variety of nanomaterials have been found to mimic the enzyme-like activity by engineering the active centers of natural enzymes or developing multivalent elements within nanostructures. Carbon nanomaterials with well-defined electronic and geometric structures have served as favorable surrogates of traditional enzymes by mimicking the highly evolved catalytic center of natural enzymes. In particular, by combining the unique electronic, optical, thermal, and mechanical properties, carbon nanomaterials-based nanozymes can offer a variety of multifunctional platforms for biomedical applications. In this review, we will introduce the enzymatic characteristics and recent advances of carbon nanozymes, and summarize their significant applications in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    CAS  Google Scholar 

  2. Liang, M. M.; Yan, X. Y. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

    CAS  Google Scholar 

  3. Wang, P. X.; Liu, S. L.; Hu, M. X.; Duan, D. M.; He, J. Y.; Hong, J. J.; Lv, R. Choi, H. S.; Yan, X. Y.; Liang, M. M. Peroxidase-like nanozymes induce a novel form of cell death and inhibit tumor growth in vivo. Adv. Funct. Mater. 2020, 30, 2000647–2000656.

    CAS  Google Scholar 

  4. Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F.; Xie, N.; Tang, A. F.; Nie, G. H.; Liang, M. M.; Yan, X. Y. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

    CAS  Google Scholar 

  5. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    CAS  Google Scholar 

  6. McVey, C.; Logan, N.; Thanh, N. T. K.; Elliott, C.; Cao, C. Unusual switchable peroxidase-mimicking nanozyme for the determination of proteolytic biomarker. Nano Res. 2019, 12, 509–516.

    CAS  Google Scholar 

  7. Pardhi, V. P.; Verma, T.; Flora, S. J. S.; Chandasana, H.; Shukla, R. Nanocrystals: An overview of fabrication, characterization and therapeutic applications in drug delivery. Curr. Pharm. Des. 2018, 24, 5129–5146.

    CAS  Google Scholar 

  8. Wang, X. Y.; Hu, Y. H.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3, 41–60.

    CAS  Google Scholar 

  9. Wang, Q. Q.; Wei, H.; Zhang, Z. Q.; Wang, E. K.; Dong, S. J. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal. Chem. 2018, 105, 218–224.

    CAS  Google Scholar 

  10. Wang, W. S.; Li, B. L.; Yang, H. L.; Lin, Z. F.; Chen, L. L.; Li, Z.; Ge, J. Y.; Zhang, T.; Xia, H.; Li, L. H.; Lu, Y. Efficient elimination of multidrug-resistant bacteria using copper sulfide nanozymes anchored to graphene oxide nanosheets. Nano Res. 2020, 13, 2156–2160.

    CAS  Google Scholar 

  11. Sun, H. J.; Zhou, Y.; Ren, J. S.; Qu, X. G. Carbon nanozymes: Enzymatic properties, catalytic mechanism, and applications. Angew. Chem., Int. Ed. 2018, 57, 9224–9237.

    CAS  Google Scholar 

  12. Hong, G. S.; Diao, S.; Antaris, A. L.; Dai, H. J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816–10906.

    CAS  Google Scholar 

  13. Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Carbon nanomaterials for electronics, optoelectronics, photo-voltaics, and sensing. Chem. Soc. Rev. 2013, 42, 2824–2860.

    CAS  Google Scholar 

  14. Xin, Q.; Jia, X. R.; Nawaz, A.; Xie, W. J.; Li, L. T.; Gong, J. R. Mimicking peroxidase active site microenvironment by functionalized graphene quantum dots. Nano Res. 2020, 13, 1427–1433.

    CAS  Google Scholar 

  15. Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

    Google Scholar 

  16. Cai, X.; Chen, H. L.; Wang, Z. X.; Sun, W. Q.; Shi, L. B.; Zhao, H. L.; Lan, M. B. 3D graphene-based foam induced by phytic acid: An effective enzyme-mimic catalyst for electrochemical detection of cell-released superoxide anion. Biosens. Bioelectron. 2019, 123, 101–107.

    CAS  Google Scholar 

  17. Ren, C. X.; Hu, X. G.; Zhou, Q. X. Graphene oxide quantum dots reduce oxidative stress and inhibit neurotoxicity in vitro and in vivo through catalase—like activity and metabolic regulation. Adv. Sci. 2018, 5, 1700595.

    Google Scholar 

  18. Nirala, N. R.; Abraham, S.; Kumar, V.; Bansal, A.; Srivastava, A.; Saxena, P. S. Colorimetric detection of cholesterol based on highly efficient peroxidase mimetic activity of graphene quantum dots. Sens. Actuators B: Chem. 2015, 218, 42–50.

    CAS  Google Scholar 

  19. Jalilov, A. S.; Nilewski, L. G.; Berka, V.; Zhang, C. H.; Yakovenko, A. A.; Wu, G.; Kent, T. A.; Tsai, A. L.; Tour, J. M. Perylene diimide as a precise graphene-like superoxide dismutase mimetic. ACS Nano 2017, 11, 2024–2032.

    CAS  Google Scholar 

  20. Wang, Y.; Wang, M. Q.; Lei, L. L.; Chen, Z. Y.; Liu, Y. S.; Bao, S. J. FePO4 embedded in nanofibers consisting of amorphous carbon and reduced graphene oxide as an enzyme mimetic for monitoring superoxide anions released by living cells. Microchim. Acta 2018, 185, 140.

    Google Scholar 

  21. Glorieux, C.; Calderon, P. B. Catalase, a remarkable enzyme: Targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol. Chem. 2017, 398, 1095–1108.

    CAS  Google Scholar 

  22. Ali, M. E.; Rahman, M. M.; Sarkar, S. M.; Hamid, S. B. A. Heterogeneous metal catalysts for oxidation reactions. J. Nanomate. 2015, 2014, 209.

    Google Scholar 

  23. Chen, Q. M.; Liang, C. H.; Zhang, X. D.; Huang, Y. M. High oxidasemimic activity of Fe nanoparticles embedded in an N-rich porous carbon and their application for sensing of dopamine. Talanta 2018, 182, 476–485.

    CAS  Google Scholar 

  24. Li, S. Q.; Wang, L. T.; Zhang, X. D.; Chai, H. X.; Huang, Y. M. A Co,N co-doped hierarchically porous carbon hybrid as a highly efficient oxidase mimetic for glutathione detection. Sens. Actuators B: Chem. 2018, 264, 312–319.

    CAS  Google Scholar 

  25. Zhang, Q.; Chen, S.; Wang, H. Surface plasmon-enhanced nanozyme-based fenton process for visible-light-driven aqueous ammonia oxidation. Green Chem. 2018, 20, 4067–4074.

    CAS  Google Scholar 

  26. Ren, X. L.; Liu, J.; Ren, J.; Tang, F. Q.; Meng, X. W. One-pot synthesis of active copper-containing carbon dots with laccase-like activities. Nanoscale 2015, 7, 19641–19646.

    CAS  Google Scholar 

  27. Hernández-Ruiz, J.; Arnao, M. B.; Hiner, A. N. P.; García-Cánovas, F.; Acosta, M. Catalase-like activity of horseradish peroxidase: Relationship to enzyme inactivation by H2O2. Biochem. J. 2001, 354, 107–114.

    Google Scholar 

  28. Liu, S.; Tian, J. Q.; Wang, L.; Luo, Y. L.; Sun, X. P. A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. RSC Adv. 2012, 2, 411–413.

    CAS  Google Scholar 

  29. Mohammadpour, Z.; Safavi, A.; Shamsipur, M. A new label free colorimetric chemosensor for detection of mercury ion with tunable dynamic range using carbon nanodots as enzyme mimics. Chem. Eng. J. 2014, 255, 1–7.

    CAS  Google Scholar 

  30. Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.

    CAS  Google Scholar 

  31. Shi, W. B.; Wang, Q. L.; Long, Y. J.; Cheng, Z. L.; Chen, S. H.; Zhang, H. Z.; Huang, Y. M. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun. 2011, 47, 6695–6697.

    CAS  Google Scholar 

  32. Tran, H. V.; Nguyen, T. V.; Nguyen, N. D.; Piro, B.; Huynh, C. D. A nanocomposite prepared from FeOOH and N-doped carbon nanosheets as a peroxidase mimic, and its application to enzymatic sensing of glucose in human urine. Microchim. Acta 2018, 185, 270.

    Google Scholar 

  33. Yeh, M. H.; Lin, L. Y.; Sun, C. L.; Leu, Y. A.; Tsai, J. T.; Yeh, C. Y.; Vittal, R.; Ho, K. C. Multiwalled carbon nanotube@reduced graphene oxide nanoribbon as the counter electrode for dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 16626–16634.

    CAS  Google Scholar 

  34. Sang, Y. J.; Huang, Y. Y.; Li, W.; Ren, J. S.; Qu, X. G. Bioinspired design of Fe3+-doped mesoporous carbon nanospheres for enhanced nanozyme activity. Chem. Eur. J. 2018, 24, 7259–7263.

    CAS  Google Scholar 

  35. Gayathri, P.; Kumar, A. S. An iron impurity in multiwalled carbon nanotube complexes with chitosan that biomimics the heme-peroxidase function. Chem. Eur. J. 2013, 19, 17103–17112.

    CAS  Google Scholar 

  36. Huang, Y. Y.; Liu, C. Q.; Pu, F.; Liu, Z.; Ren, J. S.; Qu, X. G. A GO—Se nanocomposite as an antioxidant nanozyme for cytoprotection. Chem. Commun. 2017, 53, 3082–3085.

    CAS  Google Scholar 

  37. Azadmanesh, J.; Borgstahl, G. E. O. A review of the catalytic mechanism of human manganese superoxide dismutase. Antioxidants 2018, 7, 25.

    Google Scholar 

  38. Ali, S. S.; Hardt, J. I.; Quick, K. L.; Kim-Han, J. S.; Erlanger, B. F.; Huang, T. T.; Epstein, C. J.; Dugan, L. L. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Rad. Biol. Med. 2004, 37, 1191–1202.

    CAS  Google Scholar 

  39. Purich, D. L. Enzyme catalysis: A new definition accounting for noncovalent substrate- and product-like states. Trends Biochem. Sci. 2001, 26, 417–421.

    CAS  Google Scholar 

  40. Boutorine, A. S.; Takasugi, M.; Hélène, C.; Tokuyama, H.; Isobe, H.; Nakamura, E. Fullerene—oligonucleotide conjugates: Photoinduced sequence-specific DNA cleavage. Angew. Chem., Int. Ed. 1995, 33, 2462–2465.

    Google Scholar 

  41. He, X. X.; Zhang, F. Y.; Liu, J. F.; Fang, G. Z.; Wang, S. Homogenous graphene oxide-peptide nanofiber hybrid hydrogel as biomimetic polysaccharide hydrolase. Nanoscale 2017, 9, 18066–18074.

    CAS  Google Scholar 

  42. Zhang, Q.; He, X. X.; Han, A. L.; Tu, Q. X.; Fang, G. Z.; Liu, J. F.; Wang, S.; Li, H. B. Artificial hydrolase based on carbon nanotubes conjugated with peptides. Nanoscale 2016, 8, 16851–16856.

    CAS  Google Scholar 

  43. Ma, X. J.; Zhang, L.; Xia, M. F.; Li, S. Q.; Zhang, X. H.; Zhang, Y. D. Mimicking the active sites of organophosphorus hydrolase on the backbone of graphene oxide to destroy nerve agent simulants. ACS Appl. Mater. Interfaces 2017, 9, 21089–21093.

    CAS  Google Scholar 

  44. Zhang, P.; Sun, D. R.; Cho, A.; Weon, S.; Lee, S.; Lee, J.; Han, J. W.; Kim, D. P.; Choi, W. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 2019, 10, 940.

    Google Scholar 

  45. Yang, H. K.; Xiao, J. Y.; Su, L.; Feng, T.; Lv, Q. Y.; Zhang, X. J. Oxidase-mimicking activity of the nitrogen-doped Fe3C@C composites. Chem. Commun. 2017, 53, 3882–3885.

    CAS  Google Scholar 

  46. Tang, D. S.; Liu, J. J.; Yan, X. M.; Kang, L. T. Graphene oxide derived graphene quantum dots with different photoluminescence properties and peroxidase-like catalytic activity. RSC Adv. 2016, 6, 50609–50617.

    CAS  Google Scholar 

  47. Shan, X. Y.; Chai, L. J.; Ma, J. J.; Qian, Z. S.; Chen, J. R.; Feng, H. B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst 2014, 139, 2322–2325.

    CAS  Google Scholar 

  48. Darabdhara, G.; Sharma, B.; Das, M. R.; Boukherroub, R.; Szunerits, S. Cu-Ag bimetallic nanoparticles on reduced graphene oxide nano-sheets as peroxidase mimic for glucose and ascorbic acid detection. Sens. Actuators B: Chem. 2017, 238, 842–851.

    CAS  Google Scholar 

  49. Yousefinejad, S.; Rasti, H.; Hajebi, M.; Kowsari, M.; Sadravi, S.; Honarasa, F. Design of C-dots/Fe3O4 magnetic nanocomposite as an efficient new nanozyme and its application for determination of H2O2 in nanomolar level. Sens. Actuators B: Chem. 2017, 247, 691–696.

    CAS  Google Scholar 

  50. Qiao, F. M.; Qi, Q. Q.; Wang, Z. Z.; Xu, K.; Ai, S. Y. MnSe-loaded g-C3N4 nanocomposite with synergistic peroxidase-like catalysis: Synthesis and application toward colorimetric biosensing of H2O2 and glucose. Sens. Actuators B: Chem. 2016, 229, 379–386.

    CAS  Google Scholar 

  51. Ding, P. H.; Di, J.; Chen, X. L.; Ji, M. X.; Gu, K. Z.; Yin, S.; Liu, Gao. P.; Zhang, F.; Xia, J. X.; Li, H. M. S, N codoped graphene quantum dots embedded in (BiO)2CO3: Incorporating enzymatic-like catalysis in photocatalysis. ASC Sustain. Chem. Eng. 2018, 6, 10229–10240.

    CAS  Google Scholar 

  52. Li, F.; Li, T. Y.; Sun, C. X.; Xia, J. H.; Jiao, Y.; Xu, H. P. Selenium-doped carbon quantum dots for free-radical scavenging. Angew. Chem, Int. Ed. 2017, 56, 9910–9914.

    CAS  Google Scholar 

  53. Hu, Y. H.; Gao, X. J.; Zhu, Y. Y.; Muhammad, F.; Tan, S. H.; Cao, W.; Lin, S. C.; Jin, Z.; Gao, X. F.; Wei, H. Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics. Chem. Mater. 2018, 30, 6431–6439.

    CAS  Google Scholar 

  54. Zeng, T.; Yu, M. D.; Zhang, H. Y.; He, Z. Q.; Chen, J. M.; Song, S. Fe/Fe3C@N-doped porous carbon hybrids derived from nano-scale MOFs: Robust and enhanced heterogeneous catalyst for peroxymonosulfate activation. Catal. Sci. Technol. 2017, 7, 396–404.

    CAS  Google Scholar 

  55. Chen, M. M.; Yang, B. C.; Zhu, J. L.; Liu, H.; Zhang, X.; Zheng, X. W.; Liu, Q. Y. FePt nanoparticles-decorated graphene oxide nanosheets as enhanced peroxidase mimics for sensitive response to H2O2. Mater. Sci. Eng. C 2018, 90, 610–620.

    CAS  Google Scholar 

  56. Wang, H.; Chen, Q. W.; Zhou, S. Q. Carbon-based hybrid nanogels: A synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem. Soc. Rev. 2018, 47, 4198–4232.

    CAS  Google Scholar 

  57. Liu, L.; Du, B. J.; Shang, C. S.; Wang, J.; Wang, E. K. Construction of surface charge-controlled reduced graphene oxide-loaded Fe3O4 and Pt nanohybrid for peroxidase mimic with enhanced catalytic activity. Anal. Chim. Acta 2018, 1014, 77–84.

    CAS  Google Scholar 

  58. Chen, S.; Quan, Y.; Yu, Y. L.; Wang, J. H. Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomater. Sci. Eng. 2017, 3, 313–321.

    CAS  Google Scholar 

  59. Wang, H.; Jiang, H.; Wang, S.; Shi, W. B.; He, J. C.; Liu, H.; Huang, Y. M. Fe3O4-MWCNT magnetic nanocomposites as efficient peroxidase mimic catalysts in a Fenton-like reaction for water purification without pH limitation. RSC Adv. 2014, 4, 45809–45815.

    CAS  Google Scholar 

  60. Ma, Z.; Qiu, Y. F.; Yang, H. H.; Huang, Y. M.; Liu, J. J.; Lu, Y.; Zhang, C.; Hu, P. A. Effective synergistic effect of dipeptide-polyoxometalate-graphene oxide ternary hybrid materials on peroxidase-like mimics with enhanced performance. ACS Appl. Mater. Interfaces 2015, 7, 22036–22045.

    CAS  Google Scholar 

  61. Zheng, A. X.; Cong, Z. X.; Wang, J. R.; Li, J.; Yang, H. H.; Chen, G N. Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing. Biosens. Bioelectron. 2013, 49, 519–524.

    CAS  Google Scholar 

  62. Fan, Z. T.; Zhou, S. X.; Garcia, C.; Fan, L. Z.; Zhou, J. B. pH-Responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis. Nanoscale 2017, 9, 4928–4933.

    CAS  Google Scholar 

  63. Lin, L. P.; Song, X. H.; Chen, Y. Y.; Rong, M. C.; Zhao, T. T.; Wang, Y. R.; Jiang, Y. Q.; Chen, X. Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose. Anal. Chim. Acta 2015, 869, 89–95.

    CAS  Google Scholar 

  64. Li, M.; Yang, X. J.; Ren, J. S.; Qu, K. G.; Qu, X. G. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Adv. Mater. 2012, 24, 1722–1728.

    CAS  Google Scholar 

  65. Chung, Y. H. Redox state control of a metalloprotein to generate multi-level signals for applications to bioelectronic devices. BioChip J. 2015, 9, 215–221.

    CAS  Google Scholar 

  66. Lang, J. D.; Berry, S. M.; Powers, G. L.; Beebe, D. J.; Alarid, E. T. Hormonally responsive breast cancer cells in a microfluidic co-culture model as a sensor of microenvironmental activity. Integr. Biol. 2013, 5, 807–816.

    CAS  Google Scholar 

  67. Cai, X.; Wang, Z. X.; Zhang, H. H.; Li, Y. F.; Chen, K. C.; Zhao, H. L.; Lan, M. B. Carbon-mediated synthesis of shape-controllable manganese phosphate as nanozymes for modulation of superoxide anions in HeLa cells. J. Mater. Chem. B 2019, 7, 401–407.

    CAS  Google Scholar 

  68. Zhang, Y.; Wu, C. Y.; Zhou, X. J.; Wu, X. C.; Yang, Y. Q.; Wu, H. X.; Guo, S. W.; Zhang, J. Y. Graphenequantum dots/gold electrode and its application in living cell H2O2 detection. Nanoscale 2013, 5, 1816–1819.

    CAS  Google Scholar 

  69. Chen, X. M.; Su, B. Y.; Cai, Z. X.; Chen, X.; Oyama, M. PtPd nanodendrites supported on graphene nanosheets: A peroxidase-like catalyst for colorimetric detection of H2O2. Sens. Actuators B: Chem. 2014, 201, 286–292.

    CAS  Google Scholar 

  70. Qiu, N.; Liu, Y.; Xiang, M.; Lu, X. M.; Yang, Q.; Guo, R. A facile and stable colorimetric sensor based on three-dimensional graphene/mesoporous Fe3O4 nanohybrid for highly sensitive and selective detection of p-nitrophenol. Sens. Actuators B: Chem. 2018, 266, 86–94.

    CAS  Google Scholar 

  71. Tan, H. L.; Ma, C. J.; Gao, L.; Li, Q.; Song, Y. H.; Xu, F. G.; Wang, T.; Wang, L. Metal-organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chem. Eur. J. 2014, 20, 16377–16383.

    CAS  Google Scholar 

  72. Zhong, M. X.; Chi, M. Q.; Zhu, Y.; Wang, C.; Lu, X. F. An efficient thin-walled Pd/polypyrrole hybrid nanotube biocatalyst for sensitive detection of ascorbic acid. Anal. Chim. Acta 2019, 1056, 125–134.

    CAS  Google Scholar 

  73. Shamsipur, M.; Safavi, A.; Mohammadpour, Z. Indirect colorimetric detection of glutathione based on its radical restoration ability using carbon nanodots as nanozymes. Sens. Actuators B: Chem. 2014, 199, 463–469.

    CAS  Google Scholar 

  74. Singh, V. K.; Yadav, P. K.; Chandra, S.; Bano, D.; Talat, M.; Hasan, S. H. Peroxidase mimetic activity of fluorescent NS-carbon quantum dots and their application in colorimetric detection of H2O2 and glutathione in human blood serum. J. Mater. Chem. B 2018, 6, 5256–5268.

    CAS  Google Scholar 

  75. Wang, Q. Q.; Zhang, X. P.; Huang, L.; Zhang, Z. Q.; Dong, S. J. One-pot synthesis of Fe3O4 nanoparticle loaded 3D porous graphene nanocomposites with enhanced nanozyme activity for glucose detection. ACS Appl. Mater. Interfaces 2017, 9, 7465–7471.

    CAS  Google Scholar 

  76. Zhang, R. Z.; He, S. J.; Zhang, C. M.; Chen, W. Three-dimensional Fe- and N-incorporated carbon structures as peroxidase mimics for fluorescence detection of hydrogen peroxide and glucose. J. Mater. Chem. B 2015, 3, 4146–4154.

    CAS  Google Scholar 

  77. Bao, Y. W.; Hua, X. W.; Ran, H. H.; Zeng, J.; Wu, F. G. Metal-doped carbon nanoparticles with intrinsic peroxidase-like activity for colorimetric detection of H2O2 and glucose. J. Mater. Chem. B 2019, 7, 296–304.

    CAS  Google Scholar 

  78. Lin, X. Q.; Deng, H. H.; Wu, G. W.; Peng, H. P.; Liu, A. L.; Lin, X. H.; Xia, X. H.; Chen, W. Platinum nanoparticles/graphene-oxide hybrid with excellent peroxidase-like activity and its application for cysteine detection. Analyst 2015, 140, 5251–5256.

    CAS  Google Scholar 

  79. Yang, W. Q.; Huang, T. T.; Zhao, M. M.; Luo, F.; Weng, W.; Wei, Q. H.; Lin, Z. Y.; Chen, G. N. High peroxidase-like activity of iron and nitrogen co-doped carbon dots and its application in immunosorbent assay. Talanta 2017, 164, 1–6.

    CAS  Google Scholar 

  80. Song, Y. J.; Wang, X. H.; Zhao, C.; Qu, K. G.; Ren, J. S.; Qu, X. G. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem. Eur. J. 2010, 16, 3617–3621.

    CAS  Google Scholar 

  81. Wang, Q. B.; Lei, J. P.; Deng, S. Y.; Zhang, L.; Ju, H. X. Graphene-supported ferric porphyrin as a peroxidase mimic for electrochemical DNA biosensing. Chem. Commun. 2013, 49, 916–918.

    CAS  Google Scholar 

  82. Tao, Y.; Lin, Y. H.; Huang, Z. Z.; Ren, J. S.; Qu, X. G. Incorporating graphene oxide and gold nanoclusters: A synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv. Mater. 2013, 25, 2510.

    Google Scholar 

  83. Tian, L.; Qi, J. X.; Qian, K.; Oderinde, O.; Cai, Y. Y.; Yao, C.; Song, W.; Wang, Y. H. An ultrasensitive electrochemical cytosensor based on the magnetic field assisted binanozymes synergistic catalysis of Fe3O4 nanozyme and reduced graphene oxide/molybdenum disulfide nanozyme. Sens. Actuators B: Chem. 2018, 260, 676–684.

    CAS  Google Scholar 

  84. Ding, H.; Cai, Y. J.; Gao, L. Z.; Liang, M. M.; Miao, B. P.; Wu, H. W.; Liu, Y.; Xie, N.; Tang, A. F.; Fan, K. L. et al. Exosome-like nanozyme vesicles for H2O2-responsive catalytic photoacoustic imaging of xenograft nasopharyngeal carcinoma. Nano Lett. 2019, 19, 203–209.

    CAS  Google Scholar 

  85. Sun, H. J.; Gao, N.; Dong, K.; Ren, J. S.; Qu, X. G. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 2014, 8, 6202–6210.

    CAS  Google Scholar 

  86. Samuel, E. L. G.; Duong, M. L. T.; Bitner, B. R.; Marcano, D. C.; Tour, J. M.; Kent, T. A. Hydrophilic carbon clusters as therapeutic, high-capacity antioxidants. Trends Biotechnol. 2014, 32, 501–505.

    CAS  Google Scholar 

  87. Dasarathy, S.; Brown, J. M. Alcoholic liver disease on the rise: Interorgan cross talk driving liver injury. Alcohol. Clin. Exp. Res. 2017, 41, 880–882.

    Google Scholar 

  88. Sun, A. Q.; Mu, L.; Hu, X. G. Graphene oxide quantum dots as novel nanozymes for alcohol intoxication. ACS Appl. Mater. Interfaces 2017, 9, 12241–12252.

    CAS  Google Scholar 

  89. Maji, S. K.; Mandal, A. K.; Nguyen, K. T.; Borah, P.; Zhao, Y. L. Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene. ACS Appl. Mater. Interfaces 2015, 7, 9807–9816.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (Nos. 2019T120754 and 2018M633229), Sanming Project of Medicine in Shenzhen (No. SZSM201612031), Natural Science Foundation of Guangdong Province of China (Nos. 2018A030310665 and 2018A0303130295), Shenzhen Science and Technology Innovation Committee (Nos. ZDSYS201707281114196, JCYJ20170306091657539, JCYJ20170413162242627, JCYJ20190806163814395, JCYJ-20170306091452714, and GJHZ20170313172439851), Development and Reform Commission of Shenzhen Municipality (No. S2016005470013), National Key R&D Program of China (No. 2017YFA0205501), and the National Natural Science Foundation of China (Nos. 81722024 and 81571728).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiyun Yan, Guohui Nie or Minmin Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Hu, B., Zhang, B. et al. Carbon-based nanozymes for biomedical applications. Nano Res. 14, 570–583 (2021). https://doi.org/10.1007/s12274-020-3053-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3053-9

Keywords

Navigation