Skip to main content
Log in

Hybridized 1T/2H-MoS2/graphene fishnet tube for high-performance on-chip integrated micro-systems comprising supercapacitors and gas sensors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The emerging micro-nano-processing technologies have propelled significant advances in multifunctional systems that can perform multiple functions within a small volume through integration. Herein, we present an on-chip multifunctional system based on a 1T/2H-MoS2/graphene fishnet tube, where a micro-supercapacitor and a gas sensor are integrated. A hybrid three-dimensional stereo nanostructure, including MoS2 nanosheets and graphene fishnet tubes, provides K+ ions with a short diffusion pathway and more active sites. Owing to the large layer spacing of 1T-MoS2 promoting fast reversible diffusion, the on-chip micro-supercapacitor exhibits excellent electrochemical properties, including an areal capacitance of 0.1 F·cm−2 (1 mV·s−1). The variation in the conductivity of 2H-MoS2 when ammonia molecules are adsorbed as derived from the first-principles calculations proves the Fermi level-changes theory. Driven by a micro-supercapacitor, the responsivity of the gas sensor can reach 55.7% at room temperature (27 °C). The multifunctional system demonstrates the possibility of achieving a two-dimensional integrated system for wearable devices and wireless sensor networks in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yun, J.; Lim, Y.; Lee, H.; Lee, G.; Park, H.; Hong, S. Y.; Jin, S. W.; Lee, Y. H.; Lee, S. S.; Ha, J. S. A patterned graphene/ZnO UV sensor driven by integrated asymmetric micro-supercapacitors on a liquid metal patterned foldable paper. Adv. Funct. Mater. 2017, 27, 1700135.

    Google Scholar 

  2. Song, C.; Yun, J.; Lee, H.; Park, H.; Jeong, Y. R.; Lee, G.; Kim, M. S.; Ha, J. S. A shape memory high-voltage supercapacitor with asymmetric organic electrolytes for driving an integrated NO2 gas sensor. Adv. Funct. Mater. 2019, 29, 1901996.

    Google Scholar 

  3. Kim, D.; Yun, J.; Lee, G.; Ha, J. S. Fabrication of high performance flexible micro-supercapacitor arrays with hybrid electrodes of MWNT/V2O5 nanowires integrated with a SnO2 nanowire UV sensor. Nanoscale 2014, 6, 12034–12041.

    CAS  Google Scholar 

  4. Chen, W.; Beidaghi, M.; Penmatsa, V.; Bechtold, K.; Kumari, L.; Li, W. Z.; Wang, C. L. Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors. IEEE Trans. Nanotechnol. 2010, 9, 734–740.

    Google Scholar 

  5. Dong, P.; Rodrigues, M. T. F.; Zhang, J.; Borges, R. S.; Kalaga, K.; Reddy, A. L. M.; Silva, G. G.; Ajayan, P. M.; Lou, J. A flexible solar cell/supercapacitor integrated energy device. Nano Energy 2017, 42, 181–186.

    CAS  Google Scholar 

  6. Wang, Y.; Su, S. Y.; Cai, L. J.; Qiu, B. C.; Wang, N.; Xiong, J.; Yang, C.; Tao, X. M.; Chai, Y. Monolithic integration of all-in-one supercapacitor for 3D electronics. Adv. Energy Mater. 2019, 9, 1900037.

    Google Scholar 

  7. Zhou, F. C.; Ren, Z. W.; Zhao, Y. D.; Shen, X. P.; Wang, A. W.; Li, Y. Y.; Surya, C.; Chai, Y. Perovskite photovoltachromic supercapacitor with all-transparent electrodes. ACS Nano 2016, 10, 5900–5908.

    CAS  Google Scholar 

  8. Lu, Y.; Jiang, K.; Chen, D.; Shen, G. Z. Wearable sweat monitoring system with integrated micro-supercapacitors. Nano Energy 2019, 58, 624–632.

    CAS  Google Scholar 

  9. Shen, C. W.; Xu, S. X.; Xie, Y. X.; Sanghadasa, M.; Wang, X. H.; Lin, L. W. A review of on-chip micro supercapacitors for integrated self-powering systems. J. Micro. Syst. 2017, 26, 949–965.

    CAS  Google Scholar 

  10. Xu, J.; Shen, G. Z. A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy 2015, 13, 131–139.

    CAS  Google Scholar 

  11. Park, H.; Kim, J. W.; Hong, S. Y.; Lee, G.; Kim, D. S.; Oh, J. H.; Jin, S. W.; Jeong, Y. R.; Oh, S. Y.; Yun, J. Y. et al. Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors. Adv. Funct. Mater. 2018, 28, 1707013.

    Google Scholar 

  12. Wang, K.; Zou, W. J.; Quan, B. G.; Yu, A. F.; Wu, H. P.; Jiang, P.; Wei, Z. X. An all-solid-state flexible micro-supercapacitor on a chip. Adv. Energy Mater. 2011, 1, 1068–1072.

    CAS  Google Scholar 

  13. El-Kady, M. F.; Kaner, R. B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475.

    Google Scholar 

  14. Wu, Z. S.; Feng, X. L.; Cheng, H. M. Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. Nat. Sci. Rev. 2014, 1, 277–292.

    CAS  Google Scholar 

  15. Feng, X.; Ning, J.; Wang, D.; Zhang, J. C.; Dong, J. G.; Zhang, C.; Shen, X.; Hao, Y. All-solid-state planner micro-supercapacitor based on graphene/NiOOH/Ni(OH)2 via mask-free patterning strategy. J. Power Sources 2019, 418, 130–137.

    CAS  Google Scholar 

  16. Niu, Z. Q.; Zhang, L.; Liu, L. L.; Zhu, B. W.; Dong, H. B.; Chen, X. D. All-solid-state flexible ultrathin micro-supercapacitors based on graphene. Adv. Mater. 2013, 25, 4035–4042.

    CAS  Google Scholar 

  17. Huang, P. H.; Heon, M.; Pech, D.; Brunet, M.; Taberna, P. L.; Gogotsi, Y.; Lofland, S.; Hettinger, J. D.; Simon, P. Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips. J. Power Sources 2013, 225, 240–244.

    CAS  Google Scholar 

  18. Lin, Y. J.; Chen, J. Q.; Tavakoli, M. M.; Gao, Y.; Zhu, Y. D.; Zhang, D. Q.; Kam, M.; He, Z. B.; Fan, Z. Y. Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates. Adv. Mater. 2019, 31, 1804285.

    Google Scholar 

  19. El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

    CAS  Google Scholar 

  20. Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L. J.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496–500.

    CAS  Google Scholar 

  21. Youn, D. H.; Jo, C.; Kim, J. Y.; Lee, J.; Lee, J. S. Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries. J. Power Sources 2015, 295, 228–234.

    CAS  Google Scholar 

  22. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

    CAS  Google Scholar 

  23. Pumera, M.; Loo, A. H. Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. TrAC Trends Anal. Chem. 2014, 61, 49–53.

    CAS  Google Scholar 

  24. Bissett, M. A.; Kinloch, I. A.; Dryfe, R. A. W. Characterization of MoS2-graphene composites for high-performance coin cell super-capacitors. ACS Appl. Mater. Interfaces 2015, 7, 17388–17398.

    CAS  Google Scholar 

  25. Yazyev, O. V.; Kis, A. MoS2 and semiconductors in the flatland. Mater. Today 2015, 18, 20–30.

    CAS  Google Scholar 

  26. Late, D. J.; Huang, Y. K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 2013, 7, 4879–4891.

    CAS  Google Scholar 

  27. Liu, B. L.; Chen, L.; Liu, G.; Abbas, A. N.; Fathi, M.; Zhou, C. W. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 2014, 8, 5304–5314.

    CAS  Google Scholar 

  28. Cho, B.; Yoon, J.; Lim, S. K.; Kim, A. R.; Kim, D. H.; Park, S. G.; Kwon, J. D.; Lee, Y. J.; Lee, K. H.; Lee, B. H. et al. Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater. Interfaces 2015, 7, 16775–16780.

    CAS  Google Scholar 

  29. Shang, B.; Ma, P. F.; Fan, J. C.; Jiao, L.; Liu, Z. J.; Zhang, Z. Y.; Chen, N.; Cheng, Z. L.; Cui, X. Q.; Zheng, W. T. Stabilized monolayer 1T MoS2 embedded in CoOOH for highly efficient overall water splitting. Nanoscale 2018, 10, 12330–12336.

    CAS  Google Scholar 

  30. Chhowalla, M.; Amaratunga, G. A. J. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 2000, 407, 164–167.

    CAS  Google Scholar 

  31. Yang, S. X.; Jiang, C. B.; Wei, S. H. Gas sensing in 2D materials. Appl. Phys. Rev. 2017, 4, 021304.

    Google Scholar 

  32. Huang, H. H.; Cui, Y.; Li, Q.; Dun, C. C.; Zhou, W.; Huang, W. X.; Chen, L.; Hewitt, C. A.; Carroll, D. L. Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting. Nano Energy 2016, 26, 172–179.

    Google Scholar 

  33. Pomerantseva, E.; Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2017, 2, 17089.

    CAS  Google Scholar 

  34. Fan, X. B.; Xu, P. T.; Zhou, D. K.; Sun, Y. F.; Li, Y. C.; Nguyen, M. A. T.; Terrones, M.; Mallouk, T. E. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett. 2015, 15, 5956–5960.

    CAS  Google Scholar 

  35. Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853–7856.

    CAS  Google Scholar 

  36. Geng, X. M.; Sun, W. W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H. L.; Watanabe, F.; Cui, J. B.; Chen, T. P. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672.

    CAS  Google Scholar 

  37. Ejigu, A.; Kinloch, I. A.; Prestat, E.; Dryfe, R. A. W. A simple electrochemical route to metallic phase trilayer MoS2: Evaluation as electrocatalysts and supercapacitors. J. Mater. Chem. A 2017, 5, 11316–11330.

    CAS  Google Scholar 

  38. Nayak, A. P.; Pandey, T.; Voiry, D.; Liu, J.; Moran, S. T.; Sharma, A.; Tan, C.; Chen, C. H.; Li, L. J.; Chhowalla, M. et al. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. Nano Lett. 2015, 15, 346–353.

    CAS  Google Scholar 

  39. Yang, J.; Wang, K.; Zhu, J. X.; Zhang, C.; Liu, T. X. Self-templated growth of vertically aligned 2H-1T MoS2 for efficient electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2016, 8, 31702–31708.

    CAS  Google Scholar 

  40. Hsiao, M. C.; Chang, C. Y.; Niu, L. J.; Bai, F.; Li, L. J.; Shen, H. H.; Lin, J. Y.; Lin, T. W. Ultrathin 1T-phase MoS2 nanosheets decorated hollow carbon microspheres as highly efficient catalysts for solar energy harvesting and storage. J. Power Sources 2017, 345, 156–164.

    CAS  Google Scholar 

  41. Xiang, T.; Tao, S.; Xu, W. Y.; Fang, Q.; Wu, C. Q.; Liu, D. B.; Zhou, Y.; Khalil, A.; Muhammad, Z.; Chu, W. S. et al. Stable 1T-MoSe2 and carbon nanotube hybridized flexible film: Binder-free and highperformance Li-ion anode. ACS Nano 2017, 11, 6483–6491.

    CAS  Google Scholar 

  42. He, Z. L.; Que, W. X. Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction. Appl. Mater. Today 2016, 3, 23–56.

    Google Scholar 

  43. Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313–318.

    CAS  Google Scholar 

  44. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116.

    CAS  Google Scholar 

  45. Wu, M. H.; Zhan, J.; Wu, K.; Li, Z.; Wang, L.; Geng, B. J.; Wang, L. J.; Pan, D. Y. Metallic 1T MoS2 nanosheet arrays vertically grown on activated carbon fiber cloth for enhanced Li-ion storage performance. J. Mater. Chem. A 2017, 5, 14061–14069.

    CAS  Google Scholar 

  46. Fei, Z.; Wang, B.; Ho, C. H.; Lin, F.; Yuan, J.; Zhang, Z.; Jin, C. H. Direct identification of monolayer rhenium diselenide by an individual diffraction pattern. Nano Res. 2017, 10, 2535–2544.

    CAS  Google Scholar 

  47. Wei, N.; Wang, Q.; Ma, Y.; Ruan, L. M.; Zeng, W.; Liang, D.; Xu, C.; Huang, L. S.; Zhao, J. L. Superelastic active graphene aerogels dried in natural environment for sensitive supercapacitor-type stress sensor. Electrochim Acta 2018, 283, 1390–1400.

    CAS  Google Scholar 

  48. Asres, G. A.; Baldoví, J. J.; Dombovari, A.; Järvinen, T.; Lorite, G. S.; Mohl, M.; Shchukarev, A.; Paz, A. P.; Xian, L. D.; Mikkola, J. P. et al. Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials. Nano Res. 2018, 11, 4215–4224.

    CAS  Google Scholar 

  49. Yue, Q.; Shao, Z. Z.; Chang, S. L.; Li, J. B. Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett. 2013, 8, 425.

    Google Scholar 

  50. Jungwirth, P. Density functional theory. A practical introduction. By David Sholl and Janice A. Steckel. Angew. Chem., Int. Ed. 2010, 49, 485.

    CAS  Google Scholar 

  51. Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401.

    Google Scholar 

  52. Wang, C.; Lei, S. C.; Li, X.; Guo, S. X.; Cui, P.; Wei, X. Q.; Liu, W. H.; Liu, H. Z. A reduced GO-graphene hybrid gas sensor for ultra-low concentration ammonia detection. Sensors 2018, 18, 3147.

    Google Scholar 

  53. Wu, Z. S.; Parvez, K.; Feng, X. L.; Müllen, K. Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers. J. Mater. Chem. A 2014, 2, 8288–8293.

    CAS  Google Scholar 

  54. Yun, J.; Song, C.; Lee, H.; Park, H.; Jeong, Y. R.; Kim, J. W.; Jin, S. W.; Oh, S. Y.; Sun, L. F.; Zi, G. et al. Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy 2018, 49, 644–654.

    CAS  Google Scholar 

  55. Qin, J. Q.; Zhou, F.; Xiao, H.; Ren, R. Y.; Wu, Z. S. Mesoporous polypyrrole-based graphene nanosheets anchoring redox poly-oxometalate for all-solid-state micro-supercapacitors with enhanced volumetric capacitance. Sci. China Mater. 2018, 61, 233–242.

    CAS  Google Scholar 

  56. Qin, J. Q.; Gao, J. M.; Shi, X. Y.; Chang, J. Y.; Dong, Y. F.; Zheng, S. H.; Wang, X.; Feng, L.; Wu, Z. S. Hierarchical ordered dual-mesoporous polypyrrole/graphene nanosheets as Bi-functional active materials for high-performance planar integrated system of micro-supercapacitor and gas sensor. Adv. Funct. Mater. 2020, 30, 1909756.

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Natural Science Basic Research Plan in Shaanxi Province of China (Nos. 2017ZDCXL-GY-11-03 and 2019ZDLGY16-08); Youth Science and Technology Nova Program of Shaanxi Province; the Wuhu and Xidian University special fund for industry-university-research cooperation (No. HX01201909039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Ning or Jincheng Zhang.

Electronic Supplementary Material

12274_2020_3052_MOESM1_ESM.pdf

Hybridized 1T/2H-MoS2/graphene fishnet tube for high-performance on-chip integrated micro-systems comprising supercapacitors and gas sensors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Ning, J., Wang, B. et al. Hybridized 1T/2H-MoS2/graphene fishnet tube for high-performance on-chip integrated micro-systems comprising supercapacitors and gas sensors. Nano Res. 14, 114–121 (2021). https://doi.org/10.1007/s12274-020-3052-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3052-x

Keywords

Navigation