Skip to main content
Log in

Boosting Zn-ion storage capability of self-standing Zn-doped Co3O4 nanowire array as advanced cathodes for high-performance wearable aqueous rechargeable Co//Zn batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Neutral aqueous rechargeable Co3O4//Zn batteries with high-output voltage and outstanding cycling stability have yielded new insights into wearable energy-storage devices. To meet the increasing demand for a means of powering wearable and portable devices, the development of a high-performance fiber-shaped Co//Zn battery would be highly desirable. However, the intrinsically poor conductivity of Co3O4 significantly restricts the application of these high-capacity and high-rate aqueous rechargeable battery. Encouragingly, density functional theory (DFT) calculations demonstrate that the substitution of Zn for Co3+ leads to an insulator-metal transition in the Zn-doped Co3O4 (Zn-Co3O4). In this study, we used metallic Zn-Co3O4 nanowire arrays (NWAs) as a novel binder-free cathode to successfully fabricate an all-solid-state fiber-shaped aqueous rechargeable (AFAR) Co//Zn battery. The resulting fiber-shaped Co//Zn battery takes advantage of the enhanced conductivity, increased capacity, and improved rate capability of Zn-Co3O4 NWAs to yield a remarkable capacity of 1.25 mAh·cm−2 at a current density of 0.5 mA·cm−2, extraordinary rate capability (60.8% capacity retention at a high current density of 20 mA·cm−2) and an admirable energy density of 772.6 mWh·cm−3. Thus, the successful construction of Zn-Co3O4 NWAs provides valuable insights into the design of high-capacity and high-rate cathode materials for aqueous rechargeable high-voltage batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, Y.; Ip, W. S.; Lau, Y. Y.; Sun, J. F.; Zeng, J.; Yeung, N. S. S.; Ng, W. S.; Li, H. F.; Pei, Z. X.; Xue, Q. et al. Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability. ACS Nano 2017, 11 8953–8961.

    CAS  Google Scholar 

  2. Liu, J. P.; Guan, C.; Zhou, C.; Fan, Z.; Ke, Q. Q.; Zhang, G. Z.; Liu, C.; Wang, J. A flexible Quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design. Adv. Mater. 2016, 28 8732–8739.

    CAS  Google Scholar 

  3. Zeng, Y. X.; Meng, Y.; Lai, Z. Z.; Zhang, X. Y.; Yu, M. H.; Fang, P. P.; Wu, M. M.; Tong, Y. X.; Lu, X. H. An ultrastable and high-performance flexible fiber-shaped Ni-Zn battery based on a Ni-NiO heterostructured nanosheet cathode. Adv. Mater. 2017, 29 1702698.

    Google Scholar 

  4. Zhang, Q. C.; Zhou, Z. Y.; Pan, Z. H.; Sun, J.; He, B.; Li, Q. L.; Zhang, T.; Zhao, J. X.; Tang, L.; Zhang, Z. X. et al. All-metal-organic framework-derived battery materials on carbon nanotube fibers for wearable energy-storage device. Adv. Sci. 2018, 5 1801462.

    Google Scholar 

  5. Guan, C.; Zhao, W.; Hu, Y. T.; Ke, Q. Q.; Li, X.; Zhang, H.; Wang, J. High-performance flexible solid-state Ni/Fe battery consisting of metal oxides coated carbon cloth/carbon nanofiber electrodes. Adv. Energy Mater. 2016, 6 1601034.

    Google Scholar 

  6. Zhao, J.; Li, Z. J.; Yuan, X. C.; Yang, Z.; Zhang, M.; Meng, A.; Li, Q. D. A high-energy density asymmetric supercapacitor based on Fe2O3 nanoneedle arrays and NiCo2O4/Ni(OH)2 hybrid nanosheet arrays grown on SiC nanowire networks as free-standing advanced electrodes. Adv. Energy Mater. 2018, 8 1702787.

    Google Scholar 

  7. Li, H. F.; Liu, Z. X.; Liang, G. J.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Tang, Z. J.; Wang, Y. K. et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 2018, 12 3140–3148.

    CAS  Google Scholar 

  8. Zhou, Z. Y.; Zhang, Q. C.; Sun, J.; He, B.; Guo, J. B.; Li, Q. L.; Li, C. W.; Xie, L. Y.; Yao, Y. G. Metal-organic framework derived spindlelike carbon incorporated α -Fe2O3 grown on carbon nanotube fiber as anodes for high-performance wearable asymmetric supercapacitors. ACS Nano 2018, 12 9333–9341.

    CAS  Google Scholar 

  9. Zeng, Y. X.; Lin, Z. Q.; Meng, Y.; Wang, Y. C.; Yu, M. H.; Lu, X. H.; Tong, Y. X. Flexible ultrafast aqueous rechargeable Ni//Bi battery based on highly durable single-crystalline bismuth nanostructured anode. Adv. Mater. 2016, 28 9188–9195.

    CAS  Google Scholar 

  10. Zeng, Y. X.; Lin, Z. Q.; Wang, Z. F.; Wu, M. M.; Tong, Y. X.; Lu, X. H. In situ activation of 3D porous Bi/Carbon architectures: Toward high-energy and stable nickel-bismuth batteries. Adv. Mater. 2018, 30 1707290.

    Google Scholar 

  11. Fan, Z. M.; Wang, Y. S.; Xie, Z. M.; Wang, D. L.; Yuan, Y.; Kang, H. J.; Su, B. L.; Cheng, Z. J.; Liu, Y. Y. Modified mxene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 2018, 5 1800750.

    Google Scholar 

  12. Liu, S. D.; Yin, Y.; Hui, K. S.; Hui, K. N.; Lee, S. C.; Jun, S. C. High-performance flexible quasi-solid-state supercapacitors realized by molybdenum dioxide@nitrogen-doped carbon and copper cobalt sulfide tubular nanostructures. Adv. Sci. 2018, 5 1800733.

    Google Scholar 

  13. Ma, L. T.; Chen, S. M.; Wang, D. H.; Yang, Q.; Mo, F. N.; Liang, G. J.; Li, N.; Zhang, H. Y.; Zapien, J. A.; Zhi, C. Y. Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 2019, 9 1803046.

    Google Scholar 

  14. Li, Q. L.; Zhang, Q. C.; Sun, J.; Liu, C. L.; Guo, J. B.; He, B.; Zhou, Z. Y; Man, P.; Li, C. W.; Xie, L. Y. et al. All hierarchical core-shell heterostructures as novel binder-free electrode materials for ultrahigh-energy-density wearable asymmetric supercapacitors. Adv. Sci. 2019, 6 1801379.

    Google Scholar 

  15. Zhang, Q. C.; Sun, J.; Pan, Z. H.; Zhang, J.; Zhao, J. X.; Wang, X. N.; Zhang, C. X.; Yao, Y. G.; Lu, W. B.; Li, Q. W. et al. Stretchable fiber-shaped asymmetric supercapacitors with ultrahigh energy density. Nano Energy 2017, 39 219–228.

    CAS  Google Scholar 

  16. Zhang, Q. C.; Wang, X. N.; Pan, Z. H.; Sun, J.; Zhao, J. X.; Zhang, J.; Zhang, C. X.; Tang, L.; Luo, J.; Song, B. et al. Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett. 2017, 17 2719–2726.

    CAS  Google Scholar 

  17. Guo, Y. Q.; Hong, X. F.; Wang, Y.; Li, Q.; Meng, J. S.; Dai, R. T.; Liu, X.; He, L.; Mai, L. Q. Multicomponent hierarchical Cu-doped NiCo-LDH/CuO double arrays for ultralong-life hybrid fiber supercapacitor. Adv. Funct. Mater. 2019, 29 1809004.

    Google Scholar 

  18. Zhao, H. P.; Liu, L.; Vellacheri, R.; Lei, Y. Recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors. Adv. Sci. 2017, 4 1700188.

    Google Scholar 

  19. Zhao, J. X.; Zhang, Y.; Huang, Y. N.; Xie, J. X.; Zhao, X. X.; Li, C. W.; Qu, J. Y.; Zhang, Q. C.; Sun, J.; He, B. et al. 3D printing fiber electrodes for an all-fiber integrated electronic device via hybridization of an asymmetric supercapacitor and a temperature sensor. Adv. Sci. 2018, 5 1801114.

    Google Scholar 

  20. Gui, Q. Y.; Wu, L. X.; Li, Y. Y.; Liu, J. P. Scalable wire-type asymmetric pseudocapacitor achieving high volumetric energy/power densities and ultralong cycling stability of 100 000 times. Adv. Sci. 2019, 6 1802067.

    Google Scholar 

  21. Tan, H.; Liu, Z. H.; Chao, D. L.; Hao, P.; Jia, D. D.; Sang, Y. H.; Liu, H.; Fan, H. J. Partial nitridation-induced electrochemistry enhancement of ternary oxide nanosheets for fiber energy storage device. Adv. Energy Mater. 2018, 8 1800685.

    Google Scholar 

  22. Huang, Y.; Li, Z.; Pei, Z. X.; Liu, Z. X.; Li, H. F.; Zhu, M. S.; Fan, J.; Dai, Q. B.; Zhang, M. D.; Dai, L. M. et al. Solid-state rechargeable Zn//NiCo and Zn-air batteries with ultralong lifetime and high capacity: The role of a sodium polyacrylate hydrogel electrolyte. Adv. Energy Mater. 2018, 8 1802288.

    Google Scholar 

  23. Li, Q. L.; Zhang, Q. C.; Liu, C. L.; Sun, J.; Guo, J. B.; Zhang, J.; Zhou, Z. Y.; He, B.; Pan, Z. H.; Yao, Y. G. Flexible all-solid-state fiber-shaped Ni-Fe batteries with high electrochemical performance. J. Mater. Chem. A 2019, 7 520–530.

    CAS  Google Scholar 

  24. Zhang, Y.; Wang, L.; Guo, Z. Y.; Xu, Y. F.; Wang, Y. G.; Peng, H. S. High-performance lithium-air battery with a coaxial-fiber architecture. Angew. Chem., Int. Ed. 2016, 55 4487–4491.

    CAS  Google Scholar 

  25. Xu, Y. F.; Zhang, Y.; Guo, Z. Y.; Ren, J.; Wang, Y. G.; Peng, H. S. Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets. Angew. Chem., Int. Ed. 2015, 54 15390–15394.

    CAS  Google Scholar 

  26. Xu, Y. F.; Zhao, Y.; Ren, J.; Zhang, Y.; Peng, H. S. An all-solid-state fiber-shaped aluminum-air battery with flexibility, stretchability, and high electrochemical performance. Angew. Chem., Int. Ed. 2016, 55 7979–7982.

    CAS  Google Scholar 

  27. Zhang, Y.; Wang, Y. H.; Wang, L.; Lo, C. M.; Zhao, Y.; Jiao, Y. D.; Zheng, G. F.; Peng, H. S. A fiber-shaped aqueous lithium ion battery with high power density. J. Mater. Chem. A 2016, 4 9002–9008.

    CAS  Google Scholar 

  28. Wang, Y. B.; Chen, C. J.; Xie, H.; Gao, T. T.; Yao, Y. G.; Pastel, G.; Han, X. G.; Li, Y. J.; Zhao, J. P.; Fu, K. et al. 3D-printed all-fiber Li-ion battery toward wearable energy storage. Adv. Funct. Mater. 2017, 27 1703140.

    Google Scholar 

  29. Hoshide, T.; Zheng, Y. C.; Hou, J. Y.; Wang, Z. Q.; Li, Q. W.; Zhao, Z. G.; Ma, R. Z.; Sasaki, T.; Geng, F. X. Flexible lithium-ion fiber battery by the regular stacking of two-dimensional titanium oxide nanosheets hybridized with reduced graphene oxide. Nano Lett. 2017, 17 3543–3549.

    CAS  Google Scholar 

  30. Lu, L. J.; Hu, Y. J.; Dai, K. The advance of fiber-shaped lithium ion batteries. Mater. Today Chem. 2017, 5 24–33.

    Google Scholar 

  31. Dillard, C.; Chung, S. H.; Singh, A.; Manthiram, A.; Kalra, V. Binder-free, freestanding cathodes fabricated with an ultra-rapid diffusion of sulfur into carbon nanofiber mat for lithium-sulfur batteries. Mater. Today Energy 2018, 9 336–344.

    Google Scholar 

  32. Qu, G. X.; Cheng, J. L.; Li, X. D.; Yuan, D. M.; Chen, P. N.; Chen, X. L.; Wang, B.; Peng, H. S. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 2016, 28 3646–3652.

    CAS  Google Scholar 

  33. Cherusseri, J.; Kar, K. K. Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes. J. Mater. Chem. A 2016, 4 9910–9922.

    CAS  Google Scholar 

  34. Wu, D. S.; Zhou, G. M.; Mao, E.; Sun, Y. M.; Liu, B. F.; Wang, L.; Wang, J. Y.; Shi, F. F.; Cui, Y. A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes. Nano Res. 2020, 13 1383–1388.

    CAS  Google Scholar 

  35. Sun, W. W.; Li, Y. J.; Liu, S. K.; Guo, Q. P.; Zhu, Y. H.; Hong, X. B.; Zheng, C. M.; Xie, K. Catalytic Co9S8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries. Nano Res. 2020, 13 2143–2148.

    CAS  Google Scholar 

  36. Hu, J. X.; Xie, Y. Y.; Zheng, J. Q.; Lai, Y. Q.; Zhang, Z. A. Unveiling nanoplates-assembled Bi2MoO6 microsphere as a novel anode material for high performance potassium-ion batteries. Nano Res. 2020, DOI:https://doi.org/10.1007/s12274-020-2906-6.

  37. Li, M.; Meng, J. S.; Li, Q.; Huang, M.; Liu, X.; Owusu, K. A.; Liu, Z.; Mai, L. Q. Finely crafted 3D electrodes for dendrite-free and high-performance flexible fiber-shaped Zn-Co Batteries. Adv. Funct. Mater. 2018, 28 1802016.

    Google Scholar 

  38. Wang, X. W.; Wang, F. X.; Wang, L. Y.; Li, M. X.; Wang, Y. F.; Chen, B. W.; Zhu, Y. S.; Fu, L. J.; Zha, L. S.; Zhang, L. X. et al. An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv. Mater. 2016, 28 4904–4911.

    CAS  Google Scholar 

  39. Ma, L. T.; Chen, S. M.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Zhi, C. Y. Flexible waterproof rechargeable hybrid zinc batteries initiated by multifunctional oxygen vacancies-rich cobalt oxide. ACS Nano 2018, 12 8597–8605.

    CAS  Google Scholar 

  40. Tan, P.; Chen, B.; Xu, H. R.; Cai, W. Z.; He, W.; Liu, M. L.; Shao, Z. P.; Ni, M. Co3O4 nanosheets as active material for hybrid Zn batteries. Small 2018, 14 1800225.

    Google Scholar 

  41. Ma, L. T.; Chen, S. M.; Li, H. F.; Ruan, Z. H.; Tang, Z. J.; Liu, Z. X.; Wang, Z. F.; Huang, Y.; Pei, Z. X.; Zapien, J. A. et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(III) rich-electrode. Energy Environ. Sci. 2018, 11 2521–2530.

    CAS  Google Scholar 

  42. Kong, D. Z.; Luo, J. S.; Wang, Y. L.; Ren, W. N.; Yu, T.; Luo, Y. S.; Yang, Y. P.; Cheng, C. W. Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: Morphology control and electrochemical energy storage. Adv. Funct. Mater. 2014, 24 3815–3826.

    CAS  Google Scholar 

  43. Li, G. M.; Chen, M. Z.; Ouyang, Y.; Yao, D.; Lu, L.; Wang, L.; Xia, X. F.; Lei, W.; Chen, S. M. et al. Manganese doped Co3O4 mesoporous nanoneedle array for long cycle-stable supercapacitors. Appl. Surf. Sci. 2019, 469 941–950.

    CAS  Google Scholar 

  44. Chen, H. Y.; Wang, J. P.; Liao, F.; Han, X. R.; Xu, C. J.; Zhang, Y. F. Facile synthesis of porous Mn-doped Co3O4 oblique prisms as an electrode material with remarkable pseudocapacitance. Ceram. Int. 2019, 45 8008–8016.

    CAS  Google Scholar 

  45. Švegl, F.; Orel, B.; Grabec-Švegl, I.; Kaučič, V. Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route. Electrochim. Acta 2000, 45 4359–4371.

    Google Scholar 

  46. Zhang, Q.; Xu, W.; Sun, J.; Pan, Z.; Zhao, J.; Wang, X.; Zhang, J.; Man, P.; Guo, J.; Zhou, Z. et al. Constructing ultrahigh-capacity zinc-nickel-cobalt Oxide@Ni(OH)2 core-shell nanowire arrays for high-performance coaxial fiber-shaped asymmetric supercapacitors. Nano Lett. 2017, 17 7552–7560.

    CAS  Google Scholar 

  47. Shinde, V. R.; Mahadik, S. B.; Gujar, T. P.; Lokhande, C. D. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl. Surf. Sci. 2006, 252 7487–7492.

    CAS  Google Scholar 

  48. Sun, J.; Man, P.; Zhang, Q. C.; He, B.; Zhou, Z. Y.; Li, C. W.; Wang, X. N.; Guo, J. B.; Zhao, J. X.; Xie, L. Y. et al. Hierarchically-structured Co3O4 nanowire arrays grown on carbon nanotube fibers as novel cathodes for high-performance wearable fiber-shaped asymmetric supercapacitors. Appl. Surf. Sci. 2018, 447 795–801.

    CAS  Google Scholar 

  49. Chen, X.; Liu, B.; Zhong, C.; Liu, Z.; Liu, J.; Ma, L.; Deng, Y. D.; Han, X. P.; Wu, T. P. et al. Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc-air battery integrated with flexible display. Adv. Energy Mater. 2017, 7 1700779.

    Google Scholar 

  50. Liu, T.; Zhang, L. Y.; You, W.; Yu, J. G. Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small 2018, 14 1702407.

    Google Scholar 

  51. Yan, C. S.; Chen, G.; Zhou, X.; Sun, J. X.; Lv, C. D. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv. Funct. Mater. 2016, 26 1428–1436.

    CAS  Google Scholar 

  52. Li, Q. L.; Zhang, Q. C.; Liu, C. L.; Zhou, Z. Y.; Li, C. W.; He, B.; Man, P.; Wang, X.; Yao, Y. G. Anchoring V2O5 nanosheets on hierarchical titanium nitride nanowire arrays to form core-shell heterostructures as a superior cathode for high-performance wearable aqueous rechargeable zinc-ion batteries. J. Mater. Chem. A 2019, 7 12997–13006.

    CAS  Google Scholar 

  53. Li, C. W.; Zhang, Q. C.; Songfeng, E.; Li, T. T.; Zhu, Z. Z.; He, B.; Zhou, Z. Y.; Man, P.; Li, Q. L.; Yao, Y. G. An ultra-high endurance and high-performance quasi-solid-state fiber-shaped Zn-Ag2O battery to harvest wind energy. J. Mater. Chem. A 2019, 7 2034–2040.

    CAS  Google Scholar 

  54. Zeng, Y. X.; Zhang, X. Y.; Meng, Y.; Yu, M. H.; Yi, J. N.; Wu, Y. Q.; Lu, X. H.; Tong, Y. X. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv. Mater. 2017, 29 1700274.

    Google Scholar 

  55. Cheng, D.; Yang, Y. F.; Xie, J. L.; Fang, C. J.; Zhang, G. Q.; Xiong, J. Hierarchical NiCo2O4@NiMoO4 core-shell hybrid nanowire/nanosheet arrays for high-performance pseudocapacitors. J. Mater. Chem. A 2015, 3 14348–14357.

    CAS  Google Scholar 

  56. Zhu, W. H.; Li, R. Z.; Xu, P.; Li, Y. Y.; Liu, J. P. Vanadium trioxide@carbon nanosheet array-based ultrathin flexible symmetric hydrogel supercapacitors with 2 V voltage and high volumetric energy density. J. Mater. Chem. A 2017, 5 22216–22223.

    CAS  Google Scholar 

  57. Zhu, C. R.; Yang, P. H.; Chao, D. L.; Wang, X. L.; Zhang, X.; Chen, S.; Tay, B. K.; Huang, H.; Zhang, H.; Mai, W. J. et al. All metal nitrides solid-state asymmetric supercapacitors. Adv. Mater. 2015, 27 4566–4571.

    CAS  Google Scholar 

  58. Guo, J. B.; Zhang, Q. C.; Li, Q. L.; Sun, J.; Li, C. W.; He, B.; Zhou, Z. Y.; Xie, L. Y.; Li, M. X.; Yao, Y. Rational design of hierarchical titanium Nitride@Vanadium pentoxide core-shell heterostructure fibrous electrodes for high-performance 1.6 V nonpolarity wearable supercapacitors. ACS Appl. Mater. Interfaces 2018, 10 29705–29711.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51703241), the Fundamental Research Funds for the Central Universities (No. 020514380183), the Key Research Program of Frontier Science of Chinese Academy of Sciences (No. QYZDB-SSW-SLH031), and the Science and Technology Project of Nanchang (No. 2017-SJSYS-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yagang Yao.

Electronic Supplementary Material

12274_2020_3046_MOESM1_ESM.pdf

Boosting Zn-ion storage capability of self-standing Zn-doped Co3O4 nanowire array as advanced cathodes for high-performance wearable aqueous rechargeable Co//Zn batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhang, Q., Zhou, Z. et al. Boosting Zn-ion storage capability of self-standing Zn-doped Co3O4 nanowire array as advanced cathodes for high-performance wearable aqueous rechargeable Co//Zn batteries. Nano Res. 14, 91–99 (2021). https://doi.org/10.1007/s12274-020-3046-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3046-8

Keywords

Navigation